Pathological Impact of Tau Proteolytical Process on Neuronal and Mitochondrial Function: a Crucial Role in Alzheimer's Disease - PubMed
Review
. 2023 Oct;60(10):5691-5707.
doi: 10.1007/s12035-023-03434-4. Epub 2023 Jun 19.
Affiliations
- PMID: 37332018
- DOI: 10.1007/s12035-023-03434-4
Review
Pathological Impact of Tau Proteolytical Process on Neuronal and Mitochondrial Function: a Crucial Role in Alzheimer's Disease
Margrethe A Olesen et al. Mol Neurobiol. 2023 Oct.
Abstract
Tau protein plays a pivotal role in the central nervous system (CNS), participating in microtubule stability, axonal transport, and synaptic communication. Research interest has focused on studying the role of post-translational tau modifications in mitochondrial failure, oxidative damage, and synaptic impairment in Alzheimer's disease (AD). Soluble tau forms produced by its pathological cleaved induced by caspases could lead to neuronal injury contributing to oxidative damage and cognitive decline in AD. For example, the presence of tau cleaved by caspase-3 has been suggested as a relevant factor in AD and is considered a previous event before neurofibrillary tangles (NFTs) formation.Interestingly, we and others have shown that caspase-cleaved tau in N- or C- terminal sites induce mitochondrial bioenergetics defects, axonal transport impairment, neuronal injury, and cognitive decline in neuronal cells and murine models. All these abnormalities are considered relevant in the early neurodegenerative manifestations such as memory and cognitive failure reported in AD. Therefore, in this review, we will discuss for the first time the importance of truncated tau by caspases activation in the pathogenesis of AD and how its negative actions could impact neuronal function.
Keywords: Alzheimer’s disease; Caspase; Mitochondria; Neurodegeneration; Synaptic loss; Tau.
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Similar articles
-
The Role of Mitochondrial Impairment in Alzheimer´s Disease Neurodegeneration: The Tau Connection.
Quntanilla RA, Tapia-Monsalves C. Quntanilla RA, et al. Curr Neuropharmacol. 2020;18(11):1076-1091. doi: 10.2174/1570159X18666200525020259. Curr Neuropharmacol. 2020. PMID: 32448104 Free PMC article. Review.
-
Synaptic Mitochondria: An Early Target of Amyloid-β and Tau in Alzheimer's Disease.
Torres AK, Jara C, Park-Kang HS, Polanco CM, Tapia D, Alarcón F, de la Peña A, Llanquinao J, Vargas-Mardones G, Indo JA, Inestrosa NC, Tapia-Rojas C. Torres AK, et al. J Alzheimers Dis. 2021;84(4):1391-1414. doi: 10.3233/JAD-215139. J Alzheimers Dis. 2021. PMID: 34719499 Review.
-
Amadoro G, Corsetti V, Stringaro A, Colone M, D'Aguanno S, Meli G, Ciotti M, Sancesario G, Cattaneo A, Bussani R, Mercanti D, Calissano P. Amadoro G, et al. J Alzheimers Dis. 2010;21(2):445-70. doi: 10.3233/JAD-2010-100120. J Alzheimers Dis. 2010. PMID: 20571215
-
Cieri D, Vicario M, Vallese F, D'Orsi B, Berto P, Grinzato A, Catoni C, De Stefani D, Rizzuto R, Brini M, Calì T. Cieri D, et al. Biochim Biophys Acta Mol Basis Dis. 2018 Oct;1864(10):3247-3256. doi: 10.1016/j.bbadis.2018.07.011. Epub 2018 Jul 11. Biochim Biophys Acta Mol Basis Dis. 2018. PMID: 30006151
-
Caspase-Cleaved Tau Impairs Mitochondrial Dynamics in Alzheimer's Disease.
Pérez MJ, Vergara-Pulgar K, Jara C, Cabezas-Opazo F, Quintanilla RA. Pérez MJ, et al. Mol Neurobiol. 2018 Feb;55(2):1004-1018. doi: 10.1007/s12035-017-0385-x. Epub 2017 Jan 13. Mol Neurobiol. 2018. PMID: 28084594
Cited by
-
Pérez MJ, Ibarra-García-Padilla R, Tang M, Porter GA Jr, Johnson GVW, Quintanilla RA. Pérez MJ, et al. Biochim Biophys Acta Mol Basis Dis. 2024 Jan;1870(1):166898. doi: 10.1016/j.bbadis.2023.166898. Epub 2023 Sep 28. Biochim Biophys Acta Mol Basis Dis. 2024. PMID: 37774936 Free PMC article.
-
Neuromodulation by nanozymes and ultrasound during Alzheimer's disease management.
Karthika V, Badrinathan Sridharan, Nam JW, Kim D, Gyun Lim H. Karthika V, et al. J Nanobiotechnology. 2024 Mar 30;22(1):139. doi: 10.1186/s12951-024-02406-7. J Nanobiotechnology. 2024. PMID: 38555420 Free PMC article. Review.
References
-
- Kadavath H, Hofele RV, Biernat J et al (2015) Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc National Acad Sci 112:7501–7506. https://doi.org/10.1073/pnas.1504081112 - DOI
-
- Mietelska-Porowska A, Wasik U, Goras M et al (2014) Tau protein modifications and interactions: their role in function and dysfunction. Int J Mol Sci 15:4671–4713. https://doi.org/10.3390/ijms15034671 - DOI - PubMed - PMC
-
- Yen S, Liu W-K, Hall FL et al (1995) Alzheimer neurofibrillary lesions: molecular nature and potential roles of different components. Neurobiol Aging 16:381–387. https://doi.org/10.1016/0197-4580(95)00022-7 - DOI - PubMed
-
- Drummond E, Pires G, MacMurray C et al (2020) Phosphorylated tau interactome in the human Alzheimer’s disease brain. Brain 143:awaa223. https://doi.org/10.1093/brain/awaa223 - DOI
-
- Wang J-Z, Wang Z-H, Tian Q (2014) Tau hyperphosphorylation induces apoptotic escape and triggers neurodegeneration in Alzheimer’s disease. Neurosci Bull 30:359–366. https://doi.org/10.1007/s12264-013-1415-y - DOI - PubMed - PMC
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials