pubmed.ncbi.nlm.nih.gov

Naphthodithiophene-Fused Porphyrins: Synthesis, Characterization, and Impact of Extended Conjugation on Aromaticity - PubMed

  • ️Sun Jan 01 2023

Naphthodithiophene-Fused Porphyrins: Synthesis, Characterization, and Impact of Extended Conjugation on Aromaticity

Courtney Cooper et al. Chemistry. 2023.

Abstract

The fusion of tetrapyrroles with aromatic heterocycles constitutes a useful tool for manipulating their opto-electronic properties. In this work, the synthesis of naphthodithiophene-fused porphyrins was achieved through a Heck reaction-based cascade of steps followed by the Scholl reaction. The naphthodithiophene-fused porphyrins display a unique set of optical and electronic properties. Fusion of the naphtho[2,1-b:3,4-b']dithiophene to porphyrin (F2VTP) leads to a ~20% increase in the fluorescence lifetime, which is accompanied, unexpectedly, by a more than two-fold drop in the emission quantum yield (ϕ=0.018). In contrast, fusion of the isomeric naphtho[1,2-b:4,3-b']dithiophene to porphyrin (F3VPT) results in a ~1.5-fold increase in the fluorescence quantum yield (ϕ=0.13) with a concomitant ~30 % increase in the fluorescence lifetime. This behavior suggests that fusion of the porphyrin with the naphthodithiopheno-system mainly affects the radiative rate constant in the Q-state deactivation pathway, where the effects of the isomeric naphtho[2,1-b:3,4-b']dithiophene- versus naphtho[1,2-b:4,3-b']dithiophene-fusion are essentially the opposite. Interestingly, nucleus-independent chemical shifts analysis revealed a considerable difference between the aromaticities of these two isomeric systems. Our results demonstrate that subtle structural differences in the fused components of the porphyrin can be reflected in rather significant differences between the photophysical properties of the resulting systems.

Keywords: aromatic heterocycles; naphthodithiophenes; nucleus-independent chemical shift; pi-extended porphyrin; time-resolved fluorescence.

© 2023 Wiley-VCH GmbH.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interests

The authors declare no conflict of interest.

Figures

Figure 1.
Figure 1.

Linearly π-extended porphyrins fused with aromatic heterocycles.

Figure 2.
Figure 2.

Top and side views of the X-ray crystal structures of 2VTP (right) and 3VTP.

Figure 3.
Figure 3.

a) Absorption spectra of new porphyrins in CH2Cl2 and b) their fluorescence spectra in DMF at 23°C.

Figure 4.
Figure 4.

Differential pulse voltammograms of the indicated molecular systems in DCB containing 0.1 M (TBA)ClO4.

Figure 5.
Figure 5.

Frontier orbitals of the new porphyrins as calculated by using DFT (B3LYP/6–31G(d)).

Figure 6.
Figure 6.

NICS X-Scan of 2VTP, F2VTP, 3VTP and F3VTP. a) Scheme of axes; b) NICS–X-scans; c) AICD. All scans were performed from the distance from −10 Å to 10 Å along the x-axis at intervals of 0.2 Å and at a height of 1.6 Å.

Scheme 1.
Scheme 1.

Synthesis of naphthodithiophene-fused porphyrins.

Similar articles

Cited by

References

    1. Carvalho CM, Brocksom TJ, Oliveira K. T. de, Chem. Soc. Rev. 2013, 42, 3302–3317; - PubMed
    2. Cheprakov AV, Filatov MA, J. Porphyrins Phthalocyanines 2009, 13, 291–303;
    3. Roznyatovskiy VV, Lee CH, Sessler JL, Chem. Soc. Rev. 2013, 42, 1921–1933; - PubMed
    4. Boerner LJK, Mazumder S, Pink M, Zaleski JM, Baik M-H, Chem. Eur. J. 2011, 17, 14539–14551; - PubMed
    5. Kobayashi N, Chem. Phys. Lett. 1993, 205, 51–54;
    6. Lash TD, J. Porphyrins Phthalocyanines 2001, 5, 267–288;
    7. “The Synthesis of π-Extended Porphyrins”, A. V. Cheprakov in Handbook of Porphyrin Science, Vol. 13 (Eds.: Kadish KM, Smith KM, Guilard R), World Scientific, Singapore, 2011, pp. 1–149.
    1. Filatov MA, Cheprakov AV, Beletskaya IP, Eur. J. Org. Chem. 2007, 2007, 3468–3475;
    2. Ongayi O, Gottumukkala V, Fronczek FR, Vicente MG, Bioorg. Med. Chem. Lett. 2005, 15, 1665–1668; - PubMed
    3. Remy DE, Tetrahedron Lett. 1983, 24, 1451–1454;
    4. Ito S, Murashima T, Unob H, Ono N, Chem. Commun. 1998, 1661–1662;
    5. Filatov MA, Lebedev AY, Vinogradov SA, Cheprakov AV, J. Org. Chem. 2008, 73, 4175–4185; - PMC - PubMed
    6. Silva AMG, Oliveira K. T. de, Faustino MAF, Neves MGPMS, Tomé AC, Silva AMS, Cavaleiro JAS, Brandão P, Felix V, Eur. J. Org. Chem. 2008, 2008, 704–712;
    7. Morgan AR, Pangka VS, Dolphin D, J. Chem. Soc. Chem. Commun. 1984, 1047–1048;
    8. Jiao L, Hao E, Fronczek FR, Vicente MG, Smith KM, Chem. Commun. 2006, 3900–3902; - PubMed
    9. Vicente MGH, Tom AC, Walter A, Cavaleiro JAS, Tetrahedron Lett. 1997, 38, 3639–3642;
    10. Bender CO, Bonnett R, Smith RG, J. Chem. Soc. C 1970, 1251–1257;
    11. Finikova OS, Cheprakov AV, Beletskaya IP, Carroll PJ, Vinogradov SA, J. Org. Chem. 2004, 69, 522–535; - PubMed
    12. Lee SH, Smith KM, Tetrahedron Lett. 2005, 46, 2009–2013;
    13. Vicente MGH, Jaquinod L, Khoury RG, Madrona AY, Smith KM, Tetrahedron Lett. 1999, 40, 8763–8766.
    1. Karczmarzyka Z, Wyrębeka P, Wysockia W, Ostrowskia S, Urbańczyk-Lipkowskab Z, Kalickib P, Jordan J Chem. 2011, 6, 385–392;
    2. Chenxin C, Uoyama H, Nakamura M, Uno H, Heterocycles 2012, 84, 829–841;
    3. Takai K, Kuninobu Y, Samarat A, Synlett 2011, 2011, 2177–2180;
    4. Filatov MA, Cheprakov AV, Tetrahedron 2011, 67, 3559–3566;
    5. Ito S, Murashima T, Ono N, J. Chem. Soc. Perkin Trans. 1 1997, 3160–3165;
    6. Manley JM, Roper TJ, Lash TD, J. Org. Chem. 2005, 70, 874–891; - PubMed
    7. Ostrowski S, Wyrębek P, Tetrahedron Lett. 2006, 47, 8437–8440;
    8. Finikova OS, Cheprakov AV, Carroll PJ, Vinogradov SA, J. Org. Chem. 2003, 68, 7517–7520; - PubMed
    9. Spence JD, Lash TD, J. Org. Chem. 2000, 65, 1530–1539; - PubMed
    10. Finikova OS, Aleshchenkov SE, Brinas RP, Cheprakov AV, Carroll PJ, Vinogradov SA, J. Org. Chem. 2005, 70, 4617–4628; - PubMed
    11. Filatov MA, Heinrich E, Landfester K, Baluschev S, Org. Biomol. Chem. 2015, 13, 6977–6983; - PubMed
    12. Yamada H, Kuzuhara D, Ohkubo K, Takahashi T, Okujima T, Uno H, Ono N, Fukuzumi S, J. Mater. Chem. 2010, 20; - PubMed
    13. Ishii Y, Ito S, Saito Y, Uno D, Oba T, Tetrahedron 2015, 71, 8892–8898;
    14. Lin CH, Lin KH, Pal B, Tsou LD, Chem. Commun. 2009, 803–805; - PubMed
    15. Lewtak JP, Gryko DT, Chem. Commun. 2012, 48, 10069–10086; - PubMed
    16. Ito S, Ochi N, Uno H, Murashima T, Ono N, Chem. Commun. 2000, 11, 893–894;
    17. Ono N, Hironaga H, Ono K, Kaneko S, Murashima T, Ueda T, Tsukamura C, Ogawa T, J. Chem. Soc. Perkin Trans. 1 417–423.
    1. Crossley MJ, Burn PL, J. Chem. Soc. Chem. Commun. 1991, 1569–1571.
    1. Kashiwagi Y, Ohkubo K, McDonald JA, Blake IM, Crossley MJ, Araki Y, Ito O, Imahori H, Fukuzumi S, Org. Lett. 2003, 5, 2719–2721; - PubMed
    2. Hayashi H, Touchy AS, Kinjo Y, Kurotobi K, Toude Y, Ito S, Saarenpaa H, Tkachenko NV, Lemmetyinen H, Imahori H, ChemSusChem 2013, 6, 508–517. - PubMed

LinkOut - more resources