Psychedelic-like Activity of Norpsilocin Analogues - PubMed
- ️Mon Jan 01 2024
Psychedelic-like Activity of Norpsilocin Analogues
Alexander M Sherwood et al. ACS Chem Neurosci. 2024.
Abstract
Primary metabolites of mushroom tryptamines, psilocybin and baeocystin (i.e., psilocin and norpsilocin), exhibit potent agonist activity at the serotonin 2A receptor (5-HT2A) in vitro but differ in their 5-HT2A-mediated effects in vivo. In particular, psilocin produces centrally mediated psychedelic effects in vivo, whereas norpsilocin, differing only by the loss of an N-methyl group, is devoid of psychedelic-like effects. These observations suggest that the secondary methylamine group in norpsilocin impacts its central nervous system (CNS) bioavailability but not its receptor pharmacodynamics. To test this hypothesis, eight norpsilocin derivatives were synthesized with varied secondary alkyl-, allyl-, and benzylamine groups, primarily aiming to increase their lipophilicity and brain permeability. Structure-activity relationships for the norpsilocin analogues were evaluated using the mouse head-twitch response (HTR) as a proxy for CNS-mediated psychedelic-like effects. HTR studies revealed that extending the N-methyl group of norpsilocin by a single methyl group, to give the corresponding secondary N-ethyl analogue (4-HO-NET), was sufficient to produce psilocin-like activity (median effective dose or ED50 = 1.4 mg/kg). Notably, N-allyl, N-propyl, N-isopropyl, and N-benzyl derivatives also induced psilocin-like HTR activity (ED50 = 1.1-3.2 mg/kg), with variable maximum effects (26-77 total HTR events). By contrast, adding bulkier tert-butyl or cyclohexyl groups in the same position did not elicit psilocin-like HTRs. Pharmacological assessments of the tryptamine series in vitro demonstrated interactions with multiple serotonin receptor subtypes, including 5-HT2A, and other CNS signaling proteins (e.g., sigma receptors). Overall, our data highlight key structural requirements for CNS-mediated psychedelic-like effects of norpsilocin analogues.
Keywords: head twitch response; mice; norpsilocin; psychedelic; tryptamines.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
![Figure 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ff7/10797613/ab7440f2d080/cn3c00610_0001.gif)
Tryptamine natural products with disparate bioavailability or psychoactivity, highlighting the role of hydroxyl and amine substitutions.
![Figure 2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ff7/10797613/c4821e564784/cn3c00610_0002.gif)
Synthesis of norpsilocin-related analogues with nomenclature and corresponding partition coefficient (cLogP) values calculated using Chemdraw Professional 22.2 (2023, PerkinElmer Informatics).
![Figure 3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ff7/10797613/66c7e5aaae86/cn3c00610_0003.gif)
Dose–response and time-course data for the HTR induced by norpsilocin analogues. (A) Dose–response curves for effects on the HTR (n = 5–6 mice/dose) and representative time-course plots for HTR activity of (B) 4-HO-NET, (C) 4-HO-NPT, and (D) 4-HO-NALT.
![Figure 4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ff7/10797613/1275dd0ab183/cn3c00610_0004.gif)
pKi (−log Ki) heatmap plot for inhibition constants (Ki, nM) of norpsilocin analogues in competition binding assays for human 5-HT receptors and select sites. Light gray boxes represent inhibition constants >1 μM from full dose–response experiments, and dark gray boxes indicate <50% inhibition in the primary radioligand binding screen. Each inhibition constant was derived from n = 2–3 experiments with triplicate determinations, and values for 95% confidence intervals are shown below each Ki value. Radioligands used, reference control compound used, and control Ki values for each receptor appear in
Table S2while data for other hits across the series is shown in
Figure S5.
![Figure 5](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ff7/10797613/0434b12fe5d1/cn3c00610_0005.gif)
Heatmap plots of the potencies (A, pEC50, EC50) and maximal effects (B, Emax) of norpsilocin analogues in Gαq-mediated calcium flux assays at human 5-HT2 receptors. pEC50 = −log EC50 values. EC50 values with 95% confidence intervals noted below in parentheses for 2–3 experiments with triplicate determinations are listed in each box. “x” denotes no activity, and “*” with italicized text denotes potentially ambiguous EC50 and/or Emax values. Concentration–response curves are shown in
Figure S6.
![Figure 6](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ff7/10797613/0010b8a8ecd0/cn3c00610_0006.gif)
Functional agonist activity screening heatmap plots for norpsilocin analogues at 5-HT1, 5-HT4, 5-HT5, 5-HT6, and 5-HT7 receptors using the GPCR Tango assay measuring β-arrestin recruitment. “x” denotes no activity up to 50 μM, and “*” with italicized text denotes activity trends with ambiguous EC50 and/or Emax values. If a stable top was not reached by 2 consecutive points, the maximum effect observed is reported as Emax. Assays represent 1–2 experiments run in triplicate. The associated concentration–response curves are shown in
Figure S7.
Similar articles
-
Pharmacological and behavioural effects of tryptamines present in psilocybin-containing mushrooms.
Rakoczy RJ, Runge GN, Sen AK, Sandoval O, Wells HG, Nguyen Q, Roberts BR, Sciortino JH, Gibbons WJ Jr, Friedberg LM, Jones JA, McMurray MS. Rakoczy RJ, et al. Br J Pharmacol. 2024 Oct;181(19):3627-3641. doi: 10.1111/bph.16466. Epub 2024 Jun 2. Br J Pharmacol. 2024. PMID: 38825326
-
Glatfelter GC, Pottie E, Partilla JS, Sherwood AM, Kaylo K, Pham DNK, Naeem M, Sammeta VR, DeBoer S, Golen JA, Hulley EB, Stove CP, Chadeayne AR, Manke DR, Baumann MH. Glatfelter GC, et al. ACS Pharmacol Transl Sci. 2022 Nov 2;5(11):1181-1196. doi: 10.1021/acsptsci.2c00177. eCollection 2022 Nov 11. ACS Pharmacol Transl Sci. 2022. PMID: 36407948 Free PMC article.
-
Glatfelter GC, Naeem M, Pham DNK, Golen JA, Chadeayne AR, Manke DR, Baumann MH. Glatfelter GC, et al. ACS Pharmacol Transl Sci. 2023 Mar 10;6(4):567-577. doi: 10.1021/acsptsci.2c00222. eCollection 2023 Apr 14. ACS Pharmacol Transl Sci. 2023. PMID: 37082754 Free PMC article.
-
Chemistry and Structure-Activity Relationships of Psychedelics.
Nichols DE. Nichols DE. Curr Top Behav Neurosci. 2018;36:1-43. doi: 10.1007/7854_2017_475. Curr Top Behav Neurosci. 2018. PMID: 28401524 Review.
-
Hallucinogens and Serotonin 5-HT2A Receptor-Mediated Signaling Pathways.
López-Giménez JF, González-Maeso J. López-Giménez JF, et al. Curr Top Behav Neurosci. 2018;36:45-73. doi: 10.1007/7854_2017_478. Curr Top Behav Neurosci. 2018. PMID: 28677096 Free PMC article. Review.
Cited by
-
In vitro and in vivo metabolism of psilocybin's active metabolite psilocin.
Thomann J, Kolaczynska KE, Stoeckmann OV, Rudin D, Vizeli P, Hoener MC, Pryce CR, Vollenweider FX, Liechti ME, Duthaler U. Thomann J, et al. Front Pharmacol. 2024 Apr 29;15:1391689. doi: 10.3389/fphar.2024.1391689. eCollection 2024. Front Pharmacol. 2024. PMID: 38741590 Free PMC article.
-
A narrative exploration of psilocybin's potential in mental health.
Min H, Park SY, Park J, Na S, Lee HS, Kim T, Ham J, Park YT. Min H, et al. Front Psychiatry. 2024 Oct 30;15:1429373. doi: 10.3389/fpsyt.2024.1429373. eCollection 2024. Front Psychiatry. 2024. PMID: 39540010 Free PMC article. Review.
-
Review of Psilocybin Use for Depression among Cancer Patients after Approval in Oregon.
Bellman V. Bellman V. Cancers (Basel). 2024 Apr 27;16(9):1702. doi: 10.3390/cancers16091702. Cancers (Basel). 2024. PMID: 38730654 Free PMC article. Review.
References
-
- Hofmann A.; Heim R.; Brack A.; Kobel H.; Frey A.; Ott H.; Petrzilka T.; Troxler F. Psilocybin Und Psilocin, Zwei Psychotrope Wirkstoffe Aus Mexikanischen Rauschpilzen. Helv. Chim. Acta 1959, 42 (5), 1557–1572. 10.1002/hlca.19590420518. - DOI
-
- Sherwood A. M.; Halberstadt A. L.; Klein A. K.; McCorvy J. D.; Kaylo K. W.; Kargbo R. B.; Meisenheimer P. Synthesis and Biological Evaluation of Tryptamines Found in Hallucinogenic Mushrooms: Norbaeocystin, Baeocystin, Norpsilocin, and Aeruginascin. J. Nat. Prod. 2020, 83 (2), 461–467. 10.1021/acs.jnatprod.9b01061. - DOI - PubMed
-
- Glatfelter G. C.; Pottie E.; Partilla J. S.; Sherwood A. M.; Kaylo K.; Pham D. N. K.; Naeem M.; Sammeta V. R.; DeBoer S.; Golen J. A.; Hulley E. B.; Stove C. P.; Chadeayne A. R.; Manke D. R.; Baumann M. H. Structure-Activity Relationships for Psilocybin, Baeocystin, Aeruginascin, and Related Analogueues to Produce Pharmacological Effects in Mice. ACS Pharmacol. Transl. Sci. 2022, 5 (11), 1181–1196. 10.1021/acsptsci.2c00177. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources