pubmed.ncbi.nlm.nih.gov

Diastereoselective [3 + 2] Cycloaddition between Tertiary Amine N-Oxides and Substituted Alkenes to Access 7-Azanorbornanes - PubMed

  • ️Mon Jan 01 2024

Diastereoselective [3 + 2] Cycloaddition between Tertiary Amine N-Oxides and Substituted Alkenes to Access 7-Azanorbornanes

Alexander H Cocolas et al. Org Lett. 2024.

Abstract

We have developed a diastereoselective synthesis of 43 novel 7-azanorbornanes using tertiary amine N-oxides and substituted alkenes. Our method uses an efficient [3 + 2] cycloaddition, starting from either commercially available or easily accessible precursors to generate yields up to 97% and diastereomeric ratios up to >20:1. Density functional theory (DFT) calculations were performed, suggesting that the observed diastereoselectivity is likely due to steric considerations.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. 7-Azanorbornane Relevance and Syntheses
Figure 1
Figure 1

(A) Minimized ground state for 10aa using M062x/jul-cc-pvTz. (B) X-ray structure of [10mb•H]BF4 (CD CCDC 2352512). Hydrogen atoms and BF4 anion omitted for clarity.

Scheme 2
Scheme 2. Substrate Scope

Expanded substrate scope found in SI, Scheme S1. (a) Reactions carried on a 0.4 mmol scale. Conditions: N-oxide (1.0 equiv) alkene (0.5 equiv), LDA (3.0 equiv), dry THF (0.1M), −78 °C to RT, N2. Isolated yields were reported. (b) Carried out on a 7.0 mmol scale. (c) LDA (4.5 equiv).

Similar articles

References

    1. Lovering F.; Bikker J.; Humblet C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52 (21), 6752–6756. 10.1021/jm901241e. - DOI - PubMed
    1. Lovering F. Escape from Flatland 2: complexity and promiscuity. MedChemComm 2013, 4 (3), 515–519. 10.1039/c2md20347b. - DOI
    1. Kombo D. C.; Tallapragada K.; Jain R.; Chewning J.; Mazurov A. A.; Speake J. D.; Hauser T. A.; Toler S. 3D Molecular Descriptors Important for Clinical Success. J. Chem. Inf. Model. 2013, 53 (2), 327–342. 10.1021/ci300445e. - DOI - PubMed
    1. Morley A. D.; Pugliese A.; Birchall K.; Bower J.; Brennan P.; Brown N.; Chapman T.; Drysdale M.; Gilbert I. H.; Hoelder S.; et al. Fragment-based hit identification: thinking in 3D. Drug Discovery Today 2013, 18 (23), 1221–1227. 10.1016/j.drudis.2013.07.011. - DOI - PubMed
    1. Meyers J.; Carter M.; Mok N. Y.; Brown N. On the origins of three-dimensionality in drug-like molecules. Future Medicinal Chemistry 2016, 8 (14), 1753–1767. 10.4155/fmc-2016-0095. - DOI - PMC - PubMed

LinkOut - more resources