Response of an Escherichia coli-bound fluorescent probe to colicin E1 - PubMed
Response of an Escherichia coli-bound fluorescent probe to colicin E1
W A Cramer et al. J Bacteriol. 1970 Nov.
Abstract
The fluorescent probe, 8-anilino-1-napthalenesulfonate (ANS) binds to Escherichia coli, showing an enhanced fluorescence. The interaction of colicin E1 with sensitive cells causes an increase of about 100% in the fluorescence of the bound ANS, and this change at equilibrium has an apparent "all-or-none" nature as a function of E1 multiplicity. Approximately 6 to 8% of the ANS is bound to the cells at equilibrium. The colicin E1-induced fluorescence increase can be attributed partly to an increase in ANS binding and partly to an increase in the fluorescence yield of the bound ANS. The kinetics of the E1-induced fluorescence increase in sensitive cells are very similar to those of the adenosine triphosphate decrease. The phosphorylation uncoupler p-trifluoromethoxy-carbonylcyanidephenylhydrazone also causes a large change in the fluorescence of bound ANS. Colicin E2 or E3 does not cause any fluorescence change, nor does colicin E1 cause fluorescence change with a colicinogenic strain. ANS appears to be a probe of structural or conformational change in the cell envelope that is closely associated with the colicin E1-induced adenosine triphosphate decrease.
Similar articles
-
An evaluation of N-phenyl-1-naphthylamine as a probe of membrane energy state in Escherichia coli.
Cramer WA, Postma PW, Helgerson SL. Cramer WA, et al. Biochim Biophys Acta. 1976 Dec 6;449(3):401-11. doi: 10.1016/0005-2728(76)90151-1. Biochim Biophys Acta. 1976. PMID: 793617
-
Evidence for a microviscosity increase in the Escherichia coli cell envelope caused by colicin E1.
Helgerson SL, Cramer WA, Harris JM, Lytle FE. Helgerson SL, et al. Biochemistry. 1974 Jul 16;13(15):3057-61. doi: 10.1021/bi00712a010. Biochemistry. 1974. PMID: 4135217 No abstract available.
-
Interaction of 125I-labeled colicin E1 with Escherichia coli.
Farid-Sabet S. Farid-Sabet S. J Bacteriol. 1982 Jun;150(3):1383-90. doi: 10.1128/jb.150.3.1383-1390.1982. J Bacteriol. 1982. PMID: 7042692 Free PMC article.
-
Novel approaches to the mode of action of colicins.
Smarda J. Smarda J. Folia Microbiol (Praha). 1975;20(3):264-71. doi: 10.1007/BF02876789. Folia Microbiol (Praha). 1975. PMID: 1095464 Review.
-
On mechanisms of colicin import: the outer membrane quandary.
Cramer WA, Sharma O, Zakharov SD. Cramer WA, et al. Biochem J. 2018 Dec 12;475(23):3903-3915. doi: 10.1042/BCJ20180477. Biochem J. 2018. PMID: 30541793 Review.
Cited by
-
Gould JM. Gould JM. J Bacteriol. 1979 Apr;138(1):176-84. doi: 10.1128/jb.138.1.176-184.1979. J Bacteriol. 1979. PMID: 35520 Free PMC article.
-
Mode of action of a bacteriocin from Serratia marcescens.
Foulds J. Foulds J. J Bacteriol. 1971 Sep;107(3):833-9. doi: 10.1128/jb.107.3.833-839.1971. J Bacteriol. 1971. PMID: 4328755 Free PMC article.
-
Effects of colicins E1 and K on permeability to magnesium and cobaltous ions.
Lusk JE, Nelson DL. Lusk JE, et al. J Bacteriol. 1972 Oct;112(1):148-60. doi: 10.1128/jb.112.1.148-160.1972. J Bacteriol. 1972. PMID: 4562391 Free PMC article.
-
Conservation and transformation of energy by bacterial membranes.
Harold FM. Harold FM. Bacteriol Rev. 1972 Jun;36(2):172-230. doi: 10.1128/br.36.2.172-230.1972. Bacteriol Rev. 1972. PMID: 4261111 Free PMC article. Review. No abstract available.
-
Determination of the molecularity of the colicin E1 channel by stopped-flow ion flux kinetics.
Bruggemann EP, Kayalar C. Bruggemann EP, et al. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4273-6. doi: 10.1073/pnas.83.12.4273. Proc Natl Acad Sci U S A. 1986. PMID: 2424023 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources