The dermal chromatophore unit - PubMed
The dermal chromatophore unit
J T Bagnara et al. J Cell Biol. 1968 Jul.
Abstract
Rapid color changes of amphibians are mediated by three types of dermal chromatophores, xanthophores, iridophores, and melanophores, which comprise a morphologically and physiologically distinct structure, the dermal chromatophore unit. Xanthophores, the outermost element, are located immediately below the basal lamella. Iridophores, containing light-reflecting organelles, are found just beneath the xanthophores. Under each iridophore is found a melanophore from which processes extend upward around the iridophore. Finger-like structures project from these processes and occupy fixed spaces between the xanthophores and iridophores. When a frog darkens, melanosomes move upward from the body of the melanophore to fill the fingers which then obscure the overlying iridophore. Rapid blanching is accomplished by the evacuation of melanosomes from these fingers. Pale coloration ranging from tan to green is provided by the overlying xanthophores and iridophores. Details of chromatophore structure are presented, and the nature of the intimate contact between the chromatophore types is discussed.
Similar articles
-
Ultrastructural changes in the dermal chromatophore unit of Hyla arborea during color change.
Nielsen HI. Nielsen HI. Cell Tissue Res. 1978 Dec 12;194(3):405-18. doi: 10.1007/BF00236162. Cell Tissue Res. 1978. PMID: 728971
-
Kuriyama T, Miyaji K, Sugimoto M, Hasegawa M. Kuriyama T, et al. Zoolog Sci. 2006 Sep;23(9):793-9. doi: 10.2108/zsj.23.793. Zoolog Sci. 2006. PMID: 17043401
-
Formation of the dermal chromatophore unit (DCU) in the tree frog Hyla arborea.
Yasutomi M, Yamada S. Yasutomi M, et al. Pigment Cell Res. 1998 Aug;11(4):198-205. doi: 10.1111/j.1600-0749.1998.tb00730.x. Pigment Cell Res. 1998. PMID: 9711534
-
The physiology of flatfish chromatophores.
Burton D. Burton D. Microsc Res Tech. 2002 Sep 15;58(6):481-7. doi: 10.1002/jemt.10166. Microsc Res Tech. 2002. PMID: 12242705 Review.
-
Quigley IK, Parichy DM. Quigley IK, et al. Microsc Res Tech. 2002 Sep 15;58(6):442-55. doi: 10.1002/jemt.10162. Microsc Res Tech. 2002. PMID: 12242701 Review.
Cited by
-
Multiple origins of green coloration in frogs mediated by a novel biliverdin-binding serpin.
Taboada C, Brunetti AE, Lyra ML, Fitak RR, Faigón Soverna A, Ron SR, Lagorio MG, Haddad CFB, Lopes NP, Johnsen S, Faivovich J, Chemes LB, Bari SE. Taboada C, et al. Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18574-18581. doi: 10.1073/pnas.2006771117. Epub 2020 Jul 13. Proc Natl Acad Sci U S A. 2020. PMID: 32661155 Free PMC article.
-
Fine structure of goldfish xanthophore.
Takeuchi IK, Kajishima T. Takeuchi IK, et al. J Anat. 1972 May;112(Pt 1):1-10. J Anat. 1972. PMID: 4563875 Free PMC article. No abstract available.
-
Ultrastructural changes in the dermal chromatophore unit of Hyla arborea during color change.
Nielsen HI. Nielsen HI. Cell Tissue Res. 1978 Dec 12;194(3):405-18. doi: 10.1007/BF00236162. Cell Tissue Res. 1978. PMID: 728971
-
Interplay between Foxd3 and Mitf regulates cell fate plasticity in the zebrafish neural crest.
Curran K, Lister JA, Kunkel GR, Prendergast A, Parichy DM, Raible DW. Curran K, et al. Dev Biol. 2010 Aug 1;344(1):107-18. doi: 10.1016/j.ydbio.2010.04.023. Epub 2010 May 9. Dev Biol. 2010. PMID: 20460180 Free PMC article.
-
Dynamic light filtering over dermal opsin as a sensory feedback system in fish color change.
Schweikert LE, Bagge LE, Naughton LF, Bolin JR, Wheeler BR, Grace MS, Bracken-Grissom HD, Johnsen S. Schweikert LE, et al. Nat Commun. 2023 Aug 22;14(1):4642. doi: 10.1038/s41467-023-40166-4. Nat Commun. 2023. PMID: 37607908 Free PMC article.