pubmed.ncbi.nlm.nih.gov

Transformation of Kluyveromyces lactis with the kanamycin (G418) resistance gene of Tn903 - PubMed

Comparative Study

Transformation of Kluyveromyces lactis with the kanamycin (G418) resistance gene of Tn903

K Sreekrishna et al. Gene. 1984 Apr.

Abstract

Direct selection of Kluyveromyces lactis resistant to the antibiotic G418 following transformation with the kanamycin resistance gene of Tn903 required the development of a procedure for producing high yields of viable spheroplasts and for the isolation of autonomous replication sequences (ARS). To obtain high yields of viable spheroplasts, cells were treated with (1) a thiol-reducing agent (L-cysteine), and (2) a high concentration of an osmotic stabilizer, 1.5 M sorbitol. Several ARS-containing plasmids were selected from a K. lactis recombinant DNA library in K. lactis and in Saccharomyces cerevisiae. Two of four ARS clones selected in K. lactis promoted transformation frequencies of 5-10 X 10(2) G418-resistant cells/micrograms of plasmid DNA. This frequency of transformation was at least twice as high as with ARS clones selected in S. cerevisiae. The stability of ARS-containing plasmids varied; after 20 generations of growth in the presence of G418, 16-38% of the cells remained resistant to the drug. In the absence of selection pressure less than 5% of the cells retained the drug-resistance phenotype. Plasmids containing the ARS1 or 2 mu replicon of S. cerevisiae failed to transform K. lactis for G418 resistance. Inclusion of S. cerevisiae centromere, CEN4, in a K. lactis ARS recombinant plasmid did not increase the stability of the plasmid in K. lactis, and marker genes on the vector segregated predominantly 4-:0+ through meiosis. We conclude that neither the ARS sequences or the centromere of S. cerevisiae was functioning in K. lactis.

PubMed Disclaimer

Similar articles

  • Transformation of Kluyveromyces fragilis.

    Das S, Kellermann E, Hollenberg CP. Das S, et al. J Bacteriol. 1984 Jun;158(3):1165-7. doi: 10.1128/jb.158.3.1165-1167.1984. J Bacteriol. 1984. PMID: 6327630 Free PMC article.

  • Transformation systems of non-Saccharomyces yeasts.

    Wang TT, Choi YJ, Lee BH. Wang TT, et al. Crit Rev Biotechnol. 2001;21(3):177-218. doi: 10.1080/20013891081719. Crit Rev Biotechnol. 2001. PMID: 11599715 Review.

  • Yeast DNA plasmids.

    Gunge N. Gunge N. Annu Rev Microbiol. 1983;37:253-76. doi: 10.1146/annurev.mi.37.100183.001345. Annu Rev Microbiol. 1983. PMID: 6357054 Review.

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources