Structural heterogeneity and subunit composition of horse ferritins - PubMed
- ️Fri Jan 01 1982
Comparative Study
. 1982 May 11;21(10):2293-9.
doi: 10.1021/bi00539a004.
- PMID: 7093188
- DOI: 10.1021/bi00539a004
Comparative Study
Structural heterogeneity and subunit composition of horse ferritins
S Stefanini et al. Biochemistry. 1982.
Abstract
Structural, spectroscopic, and immunological properties of horse ferritins extracted from spleen, liver, and heart were studied to test the hypothesis that the different tissue ferritins are hybrids composed of variable proportions of two subunit types. The weight-average molecular weights determined by sedimentation velocity and gel filtration increase from 460 000 for spleen to 480 000 for liver and to 515 000 for heart apoferritin; moreover, the diffusion coefficients prove that each tissue-specific ferritin consists of a population of hybrid molecules. The intrinsic fluorescence and the near-UV circular dichroism (CD) spectra change as a function of the subunit composition of the three ferritins. The fluorescence emission maximum, which occurs at a very low wavelength (315 nm) in horse spleen apoferritin, is shifted to increasingly higher wavelengths in the liver and heart proteins (320 and 325 nm, respectively), indicating that the tryptophan and tyrosine residues become less rigidly immobilized with an increase in the H-subunit content. The tryptophan residues behave as fully solvated in the monomeric subunits at acidic pH values. In accordance with the fluorescence data, the near-UV CD spectra show that the tryptophan environment is highly asymmetric in spleen apoferritin, progressively less so in liver and heart apoferritins, and completely relaxed in the dissociated subunits. Moreover, they show that the environment of tyrosines and phenylalanines differs markedly in the spleen and heart apoproteins. The ferritins studied appear to have immunogenic sites which are specific for the H and L subunits on the basis of enzyme-linked immunoassay and double-diffusion experiments.
Similar articles
-
Linder MC, Nagel GM, Roboz M, Hungerford DM Jr. Linder MC, et al. J Biol Chem. 1981 Sep 10;256(17):9104-10. J Biol Chem. 1981. PMID: 7263701
-
Assembly of intra- and interspecies hybrid apoferritins.
Otsuka S, Listowsky I, Niitsu Y, Urushizaki I. Otsuka S, et al. J Biol Chem. 1980 Jul 10;255(13):6234-7. J Biol Chem. 1980. PMID: 6771266
-
The organ-specificity of ferritin in human and horse liver and spleen.
Crichton RR, Millar JA, Cumming RL, Bryce CF. Crichton RR, et al. Biochem J. 1973 Jan;131(1):51-9. doi: 10.1042/bj1310051. Biochem J. 1973. PMID: 4198584 Free PMC article.
-
[Ferritin. New molecular and medical perspectives].
Crichton RR. Crichton RR. Nouv Rev Fr Hematol (1978). 1982;24(2):49-53. Nouv Rev Fr Hematol (1978). 1982. PMID: 6180379 Review. French. No abstract available.
Cited by
-
Cavallo S, Mei G, Stefanini S, Rosato N, Finazzi-Agrò A, Chiancone E. Cavallo S, et al. Protein Sci. 1998 Feb;7(2):427-32. doi: 10.1002/pro.5560070224. Protein Sci. 1998. PMID: 9521120 Free PMC article.
-
Enrichment and characterization of ferritin for nanomaterial applications.
Ghirlando R, Mutskova R, Schwartz C. Ghirlando R, et al. Nanotechnology. 2016 Jan 29;27(4):045102. doi: 10.1088/0957-4484/27/4/045102. Epub 2015 Dec 14. Nanotechnology. 2016. PMID: 26656976 Free PMC article.
-
Gerl M, Jaenicke R. Gerl M, et al. Eur Biophys J. 1987;15(2):103-9. doi: 10.1007/BF00257503. Eur Biophys J. 1987. PMID: 3436310
-
Schuck P. Schuck P. Biophys J. 2000 Mar;78(3):1606-19. doi: 10.1016/S0006-3495(00)76713-0. Biophys J. 2000. PMID: 10692345 Free PMC article.
-
May CA, Grady JK, Laue TM, Poli M, Arosio P, Chasteen ND. May CA, et al. Biochim Biophys Acta. 2010 Aug;1800(8):858-70. doi: 10.1016/j.bbagen.2010.03.012. Epub 2010 Mar 20. Biochim Biophys Acta. 2010. PMID: 20307627 Free PMC article. Review.