Hippocampal synaptogenesis in cell culture: developmental time course of synapse formation, calcium influx, and synaptic protein distribution - PubMed
Hippocampal synaptogenesis in cell culture: developmental time course of synapse formation, calcium influx, and synaptic protein distribution
T A Basarsky et al. J Neurosci. 1994 Nov.
Abstract
The formation of chemical synapses between hippocampal neurons in primary cell culture was studied using electrophysiology, calcium imaging, and immunocytochemical approaches. Inhibitory and excitatory synapses formed within 12 d in cell culture (DIC) that were sensitive to the N-type calcium channel blocker omega-conotoxin GVIA (omega-CgTx). At 4 DIC, immature connections were present in which spontaneous, but rarely evoked, synaptic currents were detected. At both 4 and 12 DIC, the synaptic proteins rab3a, synapsin I, and synaptotagmin were present in hippocampal neurons, but the subcellular distribution changed from one in which immunoreactivity was initially distributed within soma and neurites to a punctate varicose appearance. Correlated with the transformation from immature to mature synaptic states was the onset of omega-CgTx-sensitive calcium influx. Taken together, these data suggest that the expression of functional omega-CgTx-sensitive calcium influx is temporally coincident with synapse formation, and that during the maturation of the synapse there is a redistribution of synaptic proteins.
Similar articles
-
Contact-dependent regulation of N-type calcium channel subunits during synaptogenesis.
Bahls FH, Lartius R, Trudeau LE, Doyle RT, Fang Y, Witcher D, Campbell K, Haydon PG. Bahls FH, et al. J Neurobiol. 1998 May;35(2):198-208. doi: 10.1002/(sici)1097-4695(199805)35:2<198::aid-neu6>3.0.co;2-#. J Neurobiol. 1998. PMID: 9581974
-
Ohno-Shosaku T, Hirata K, Sawada S, Yamamoto C. Ohno-Shosaku T, et al. Neurosci Lett. 1994 Nov 7;181(1-2):145-8. doi: 10.1016/0304-3940(94)90580-0. Neurosci Lett. 1994. PMID: 7898756
-
Scholz KP, Miller RJ. Scholz KP, et al. J Neurosci. 1995 Jun;15(6):4612-7. doi: 10.1523/JNEUROSCI.15-06-04612.1995. J Neurosci. 1995. PMID: 7790927 Free PMC article.
-
Nooney JM, Lodge D. Nooney JM, et al. Eur J Pharmacol. 1996 Jun 13;306(1-3):41-50. doi: 10.1016/0014-2999(96)00195-1. Eur J Pharmacol. 1996. PMID: 8813613
-
Mechanisms of synaptogenesis in hippocampal neurons in primary culture.
Matteoli M, Verderio C, Krawzeski K, Mundigl O, Coco S, Fumagalli G, De Camilli P. Matteoli M, et al. J Physiol Paris. 1995;89(1):51-5. doi: 10.1016/0928-4257(96)80551-1. J Physiol Paris. 1995. PMID: 7581299 Review.
Cited by
-
The auxiliary subunit KChIP2 is an essential regulator of homeostatic excitability.
Wang HG, He XP, Li Q, Madison RD, Moore SD, McNamara JO, Pitt GS. Wang HG, et al. J Biol Chem. 2013 May 10;288(19):13258-68. doi: 10.1074/jbc.M112.434548. Epub 2013 Mar 27. J Biol Chem. 2013. PMID: 23536187 Free PMC article.
-
Kalinowska M, Chávez AE, Lutzu S, Castillo PE, Bukauskas FF, Francesconi A. Kalinowska M, et al. J Biol Chem. 2015 Jun 26;290(26):15909-20. doi: 10.1074/jbc.M115.640136. Epub 2015 May 5. J Biol Chem. 2015. PMID: 25944910 Free PMC article.
-
Role of Two-Pore Channels in Embryonic Development and Cellular Differentiation.
Webb SE, Kelu JJ, Miller AL. Webb SE, et al. Cold Spring Harb Perspect Biol. 2020 Jan 2;12(1):a035170. doi: 10.1101/cshperspect.a035170. Cold Spring Harb Perspect Biol. 2020. PMID: 31358517 Free PMC article. Review.
-
Pemberton K, Rosato M, Dedert C, DeLeon C, Arnatt C, Xu F. Pemberton K, et al. eNeuro. 2022 Jul 15;9(4):ENEURO.0475-21.2022. doi: 10.1523/ENEURO.0475-21.2022. Print 2022 Jul-Aug. eNeuro. 2022. PMID: 35788105 Free PMC article.
-
Gomperts SN, Carroll R, Malenka RC, Nicoll RA. Gomperts SN, et al. J Neurosci. 2000 Mar 15;20(6):2229-37. doi: 10.1523/JNEUROSCI.20-06-02229.2000. J Neurosci. 2000. PMID: 10704498 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources