Multiple evolutionary origin of pyridoxal-5'-phosphate-dependent amino acid decarboxylases - PubMed
- ️Sat Jan 01 1994
Comparative Study
Multiple evolutionary origin of pyridoxal-5'-phosphate-dependent amino acid decarboxylases
E Sandmeier et al. Eur J Biochem. 1994.
Free article
Abstract
Comparison of the amino acid sequences of nine different pyridoxal-5'-phosphate-dependent amino acid decarboxylases indicated that they can be subdivided into four different groups that seem to be evolutionarily unrelated to each other. Group I is represented by glycine decarboxylase, a component of a multienzyme system; group II comprises glutamate, histidine, tyrosine, and aromatic-L-amino-acid decarboxylases; group III, procaryotic ornithine and lysine decarboxylase as well as the procaryotic biodegradative type of arginine decarboxylase; group IV, eucaryotic ornithine and arginine decarboxylase as well as the procaryotic biosynthetic type of arginine decarboxylase and diaminopimelate decarboxylase. (N-1) profile analysis, a more stringent application of profile analysis, established the homology among the enzymes of each group. A search with the profile of group II indicated a distant relationship with aminotransferases and thus with the alpha family of pyridoxal-5'-phosphate-dependent enzymes. No evidence was obtained that groups I, III and IV were related with other pyridoxal-5'-phosphate-dependent enzymes or any other protein in the database. Unlike the aminotransferases, which, with few possible exceptions, constitute a single group of homologous proteins, the amino acid decarboxylases, by the criterion of profile analysis, have evolved along multiple lineages, in some cases even if they have the same substrate specificity.
Similar articles
-
Paiardini A, Giardina G, Rossignoli G, Voltattorni CB, Bertoldi M. Paiardini A, et al. Curr Med Chem. 2017;24(3):226-244. doi: 10.2174/0929867324666161123093339. Curr Med Chem. 2017. PMID: 27881066 Review.
-
Torrens-Spence MP, von Guggenberg R, Lazear M, Ding H, Li J. Torrens-Spence MP, et al. BMC Plant Biol. 2014 Sep 18;14:247. doi: 10.1186/s12870-014-0247-x. BMC Plant Biol. 2014. PMID: 25230835 Free PMC article.
-
Phillips RS, Poteh P, Krajcovic D, Miller KA, Hoover TR. Phillips RS, et al. Biochemistry. 2019 Feb 26;58(8):1038-1042. doi: 10.1021/acs.biochem.8b01319. Epub 2019 Feb 1. Biochemistry. 2019. PMID: 30699288
-
Mammalian L-amino acid decarboxylases producing 1,4-diamines: analogies among differences.
Viguera E, Trelles O, Urdiales JL, Matés JM, Sánchez-Jiménez F. Viguera E, et al. Trends Biochem Sci. 1994 Aug;19(8):318-9. doi: 10.1016/0968-0004(94)90069-8. Trends Biochem Sci. 1994. PMID: 7940675 Review. No abstract available.
Cited by
-
Phillips RS, Nguyen Hoang KN. Phillips RS, et al. Arch Biochem Biophys. 2022 Nov 30;731:109429. doi: 10.1016/j.abb.2022.109429. Epub 2022 Oct 18. Arch Biochem Biophys. 2022. PMID: 36265649 Free PMC article.
-
Bisello G, Longo C, Rossignoli G, Phillips RS, Bertoldi M. Bisello G, et al. Amino Acids. 2020 Aug;52(8):1089-1105. doi: 10.1007/s00726-020-02885-6. Epub 2020 Aug 25. Amino Acids. 2020. PMID: 32844248 Free PMC article. Review.
-
A neurotransmitter produced by gut bacteria modulates host sensory behaviour.
O'Donnell MP, Fox BW, Chao PH, Schroeder FC, Sengupta P. O'Donnell MP, et al. Nature. 2020 Jul;583(7816):415-420. doi: 10.1038/s41586-020-2395-5. Epub 2020 Jun 17. Nature. 2020. PMID: 32555456 Free PMC article.
-
Overexpression of arginine decarboxylase in transgenic plants.
Burtin D, Michael AJ. Burtin D, et al. Biochem J. 1997 Jul 15;325 ( Pt 2)(Pt 2):331-7. doi: 10.1042/bj3250331. Biochem J. 1997. PMID: 9230111 Free PMC article.
-
Jensen RA, Gu W. Jensen RA, et al. J Bacteriol. 1996 Apr;178(8):2161-71. doi: 10.1128/jb.178.8.2161-2171.1996. J Bacteriol. 1996. PMID: 8636014 Free PMC article. Review. No abstract available.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases