Prebiotic synthesis of diaminopyrimidine and thiocytosine - PubMed
Prebiotic synthesis of diaminopyrimidine and thiocytosine
M P Robertson et al. J Mol Evol. 1996 Dec.
Abstract
The reaction of guanidine hydrochloride with cyanoacetaldehyde gives high yields (40-85%) of 2,4-diaminopyrimidine under the concentrated conditions of a drying lagoon model of prebiotic synthesis, in contrast to the low yields previously obtained under more dilute conditions. The prebiotic source of cyanoacetaldehyde, cyanoacetylene, is produced from electric discharges under reducing conditions. The effect of pH and concentration of guanidine hydrochloride on the rate of synthesis and yield of diaminopyrimidine were investigated, as well as the hydrolysis of diaminopyrimidine to cytosine, isocytosine, and uracil. Thiourea also reacts with cyanoacetaldehyde to give 2-thiocytosine, but the pyrimidine yields are much lower than with guanidine hydrochloride or urea. Thiocytosine hydrolyzes to thiouracil and cytosine and then to uracil. This synthesis would have been a significant prebiotic source of 2-thiopyrimidines and 5-substituted derivatives of thiouracil, many of which occur in tRNA. The applicability of these results to the drying lagoon model of prebiotic synthesis was tested by dry-down experiments where dilute solutions of cyanoacetaldehyde, guanidine hydrochloride, and 0.5 M NaCl were evaporated over varying periods of time. The yields of diaminopyrimidine varied from 1 to 7%. These results show that drying lagoons and beaches may have been major sites of prebiotic syntheses.
Similar articles
-
An efficient prebiotic synthesis of cytosine and uracil.
Robertson MP, Miller SL. Robertson MP, et al. Nature. 1995 Jun 29;375(6534):772-4. doi: 10.1038/375772a0. Nature. 1995. PMID: 7596408
-
Concentration by evaporation and the prebiotic synthesis of cytosine.
Nelson KE, Robertson MP, Levy M, Miller SL. Nelson KE, et al. Orig Life Evol Biosph. 2001 Jun;31(3):221-9. doi: 10.1023/a:1010652418557. Orig Life Evol Biosph. 2001. PMID: 11434101
-
Menor-Salván C, Ruiz-Bermejo DM, Guzmán MI, Osuna-Esteban S, Veintemillas-Verdaguer S. Menor-Salván C, et al. Chemistry. 2009;15(17):4411-8. doi: 10.1002/chem.200802656. Chemistry. 2009. PMID: 19288488
-
Prebiotic syntheses of purines and pyrimidines.
Basile B, Lazcano A, Oró J. Basile B, et al. Adv Space Res. 1984;4(12):125-31. doi: 10.1016/0273-1177(84)90554-4. Adv Space Res. 1984. PMID: 11537766 Review.
-
Current status of the prebiotic synthesis of small molecules.
Miller SL. Miller SL. Chem Scr. 1986;26B:5-11. Chem Scr. 1986. PMID: 11542054 Review.
Cited by
-
Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides.
Xu J, Chmela V, Green NJ, Russell DA, Janicki MJ, Góra RW, Szabla R, Bond AD, Sutherland JD. Xu J, et al. Nature. 2020 Jun;582(7810):60-66. doi: 10.1038/s41586-020-2330-9. Epub 2020 Jun 3. Nature. 2020. PMID: 32494078 Free PMC article.
-
Precambrian lunar volcanic protolife.
Green J. Green J. Int J Mol Sci. 2009 Jun 11;10(6):2681-2721. doi: 10.3390/ijms10062681. Int J Mol Sci. 2009. PMID: 19582224 Free PMC article. Review.
-
Camiruaga A, Usabiaga I, Calabrese C, Lamas I, Basterretxea FJ, Fernández JA. Camiruaga A, et al. Chemistry. 2022 Jan 3;28(1):e202103636. doi: 10.1002/chem.202103636. Epub 2021 Dec 2. Chemistry. 2022. PMID: 34854511 Free PMC article.
-
The stability of the RNA bases: implications for the origin of life.
Levy M, Miller SL. Levy M, et al. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7933-8. doi: 10.1073/pnas.95.14.7933. Proc Natl Acad Sci U S A. 1998. PMID: 9653118 Free PMC article.
-
Saladino R, Neri V, Crestini C, Costanzo G, Graciotti M, Di Mauro E. Saladino R, et al. J Mol Evol. 2010 Aug;71(2):100-10. doi: 10.1007/s00239-010-9366-7. Epub 2010 Jul 28. J Mol Evol. 2010. PMID: 20665014
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources