Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells - PubMed
- ️Wed Jan 01 1997
. 1997 Jul 8;94(14):7303-7.
doi: 10.1073/pnas.94.14.7303.
C Niedergang, C Trucco, M Ricoul, B Dutrillaux, M Mark, F J Oliver, M Masson, A Dierich, M LeMeur, C Walztinger, P Chambon, G de Murcia
Affiliations
- PMID: 9207086
- PMCID: PMC23816
- DOI: 10.1073/pnas.94.14.7303
Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells
J M de Murcia et al. Proc Natl Acad Sci U S A. 1997.
Abstract
Poly(ADP-ribose) polymerase [PARP; NAD+ ADP-ribosyltransferase; NAD+: poly(adenosine-diphosphate-D-ribosyl)-acceptor ADP-D-ribosyltransferase, EC 2.4.2.30] is a zinc-finger DNA-binding protein that detects specifically DNA strand breaks generated by genotoxic agents. To determine its biological function, we have inactivated both alleles by gene targeting in mice. Treatment of PARP-/- mice either by the alkylating agent N-methyl-N-nitrosourea (MNU) or by gamma-irradiation revealed an extreme sensitivity and a high genomic instability to both agents. Following whole body gamma-irradiation (8 Gy) mutant mice died rapidly from acute radiation toxicity to the small intestine. Mice-derived PARP-/- cells displayed a high sensitivity to MNU exposure: a G2/M arrest in mouse embryonic fibroblasts and a rapid apoptotic response and a p53 accumulation were observed in splenocytes. Altogether these results demonstrate that PARP is a survival factor playing an essential and positive role during DNA damage recovery.
Figures

Inactivation of PARP by homologous recombination. (A) Scheme of targeting construct (Top), the PARP gene and hybridation probe (Middle), and the targeted allele (Bottom). EcoRI restriction was used to detect the targeted gene as indicated. (B) Southern blot of EcoRI-digested tail DNA from wild-type (wt) (+/+), heterozygous (+/−), and homozygous (−/−) PARP-targeted mice, using the 5′probe. The wt and mutant fragment are 9.6 and 3.3 kb, respectively. (C and D) PARP protein was not expressed and poly(ADP-ribose) activity was not detectable in PARP−/− cells isolated from spleen. B, BamHI; E, EcoRI; X, XhoI; Xb, XbaI; pGK-neo, neomycin-resistance gene driven by the pGK promoter; HSV-Tk, thymidine kinase gene driven by the herpes simplex virus promoter; PARP+/−, heterozygous PARP mutant; PARP−/−, homozygous PARP mutant.

Survival of PARP+/+ and PARP−/− mice after i.p. injection of MNU at 75 mg/kg body weight at 6 weeks of age (A), and γ-radiation with 8 Gy at 6–8 weeks of age (B). The percentage of alive mice at the end of a week is plotted against age.

Transverse histological sections through the duodenum of an irradiated PARP−/− mouse (A and D), of an irradiated PARP+/+ mouse (B and E), and of an untreated PARP−/− mouse (C and F). (A–C) Full thickness of the duodenal wall. (D–F) Details of the epithelium near the tips of the villi. Note that the untreated PARP−/− duodenum (C and F) is histologically indistinguishable from its wt counterpart. a, Absorptive cell; c, crypt; g, goblet cell; l, lumen of the small intestine; m, muscularis; v, villi. (A–C, ×170; and D–F, ×750.)

Mean number of SCEs per cell in PARP−/− and PARP+/+ mice, before and after exposure to MNU during 9 or 30 h, and mean number of chromatid breaks after exposure to γ-rays 3 or 7 h before harvesting bone marrow cells.

PARP deficiency affects cell cycle progression and activates the programmed cell death following MNU treatment. (A) Cell cycle progression of primary fibroblasts PARP+/+ and PARP−/− following mock or MNU treatment. (B) Time course induction of apoptosis in splenocytes lacking PARP by 2 mM MNU. (C) p53 accumulation.
Similar articles
-
Schreiber V, Hunting D, Trucco C, Gowans B, Grunwald D, De Murcia G, De Murcia JM. Schreiber V, et al. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4753-7. doi: 10.1073/pnas.92.11.4753. Proc Natl Acad Sci U S A. 1995. PMID: 7761396 Free PMC article.
-
DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines.
Trucco C, Oliver FJ, de Murcia G, Ménissier-de Murcia J. Trucco C, et al. Nucleic Acids Res. 1998 Jun 1;26(11):2644-9. doi: 10.1093/nar/26.11.2644. Nucleic Acids Res. 1998. PMID: 9592149 Free PMC article.
-
PARP-1 modifies the effectiveness of p53-mediated DNA damage response.
Valenzuela MT, Guerrero R, Núñez MI, Ruiz De Almodóvar JM, Sarker M, de Murcia G, Oliver FJ. Valenzuela MT, et al. Oncogene. 2002 Feb 7;21(7):1108-16. doi: 10.1038/sj.onc.1205169. Oncogene. 2002. PMID: 11850828
-
Sukhanova MV, Lavrik OI, Khodyreva SN. Sukhanova MV, et al. Mol Biol (Mosk). 2004 Sep-Oct;38(5):834-47. Mol Biol (Mosk). 2004. PMID: 15554186 Review. Russian.
-
Involvement of poly(ADP-ribose) polymerase in base excision repair.
Dantzer F, Schreiber V, Niedergang C, Trucco C, Flatter E, De La Rubia G, Oliver J, Rolli V, Ménissier-de Murcia J, de Murcia G. Dantzer F, et al. Biochimie. 1999 Jan-Feb;81(1-2):69-75. doi: 10.1016/s0300-9084(99)80040-6. Biochimie. 1999. PMID: 10214912 Review.
Cited by
-
Khodyreva SN, Ilina ES, Dyrkheeva NS, Kochetkova AS, Yamskikh AA, Maltseva EA, Malakhova AA, Medvedev SP, Zakian SM, Lavrik OI. Khodyreva SN, et al. Cells. 2024 Feb 6;13(4):302. doi: 10.3390/cells13040302. Cells. 2024. PMID: 38391916 Free PMC article.
-
Bock FJ, Krumschnabel G, Manzl C, Peintner L, Tanzer MC, Hermann-Kleiter N, Baier G, Llacuna L, Yelamos J, Villunger A. Bock FJ, et al. Cell Death Differ. 2013 Apr;20(4):546-57. doi: 10.1038/cdd.2012.152. Epub 2012 Dec 14. Cell Death Differ. 2013. PMID: 23238565 Free PMC article.
-
The beneficial role of vitamin D in obesity: possible genetic and cell signaling mechanisms.
vinh quốc Lu'o'ng K, Nguyễn LT. vinh quốc Lu'o'ng K, et al. Nutr J. 2013 Jun 25;12:89. doi: 10.1186/1475-2891-12-89. Nutr J. 2013. PMID: 23800102 Free PMC article. Review.
-
Combining PARP Inhibition with Platinum, Ruthenium or Gold Complexes for Cancer Therapy.
Yusoh NA, Ahmad H, Gill MR. Yusoh NA, et al. ChemMedChem. 2020 Nov 18;15(22):2121-2135. doi: 10.1002/cmdc.202000391. Epub 2020 Sep 10. ChemMedChem. 2020. PMID: 32812709 Free PMC article. Review.
-
Maltseva EA, Rechkunova NI, Sukhanova MV, Lavrik OI. Maltseva EA, et al. J Biol Chem. 2015 Sep 4;290(36):21811-20. doi: 10.1074/jbc.M115.646638. Epub 2015 Jul 13. J Biol Chem. 2015. PMID: 26170451 Free PMC article.
References
-
- Althaus F R, Richter C. Mol Biol Biochem Biophys. 1987;37:1–125. - PubMed
-
- Ménissier de Murcia J, de Murcia G. Trends Biochem. 1994;19:172–176. - PubMed
-
- Ménissier de Murcia J, Molinete M, Gradwohl G, Simonin F, de Murcia G. J Mol Biol. 1989;210:229–233. - PubMed
-
- Simonin F, Ménissier de Murcia J, Poch O, Muller S, Gradwohl G, Molinete M, Penning C, Keith G, Murcia G. J Biol Chem. 1990;265:19249–19256. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous