Deoxyribonucleic acid methylation and chromatin organization in Tetrahymena thermophila - PubMed
Deoxyribonucleic acid methylation and chromatin organization in Tetrahymena thermophila
K Pratt et al. Mol Cell Biol. 1981 Jul.
Abstract
Deoxyribonucleic acid (DNA) of the transcriptionally active macronucleus of Tetrahymena thermophila is methylated at the N6 position of adenine to produce methyladenine (MeAde); approximately 1 in every 125 adenine residues (0.8 mol%) is methylated. Transcriptionally inert micronuclear DNA is not methylated (< or = 0.01 mol% MeAde; M. A. Gorovsky, S. Hattman, and G. L. Pleger, J. Cell Biol. 56:697-701, 1973). There is no detectable cytosine methylation in macronuclei in Tetrahymena DNA (< or = 0.01 mol% 5-methylcytosine). MeAde-containing DNA sequences in macronuclei are preferentially digested by both staphylococcal nuclease and pancreatic deoxyribonuclease I. In contrast, there is no preferential release of MeAde during digestion of purified DNA. These results indicate that MeAde residues are predominantly located in "linker DNA" and perhaps have a function in transcription. Pulse-chase studies showed that labeled MeAde remains preferentially in linker DNA during subsequent rounds of DNA replication; i.e., there is little, if any, movement of nucleosomes during chromatin replication. This implies that nucleosomes may be phased with respect to DNA sequence.
Similar articles
-
Karrer KM, VanNuland TA. Karrer KM, et al. Nucleic Acids Res. 1998 Oct 15;26(20):4566-73. doi: 10.1093/nar/26.20.4566. Nucleic Acids Res. 1998. PMID: 9753722 Free PMC article.
-
Two types of telomeric chromatin in Tetrahymena thermophila.
Cohen P, Blackburn EH. Cohen P, et al. J Mol Biol. 1998 Jul 17;280(3):327-44. doi: 10.1006/jmbi.1998.1867. J Mol Biol. 1998. PMID: 9665840
-
Karrer KM, VanNuland TA. Karrer KM, et al. Nucleic Acids Res. 2002 Mar 15;30(6):1364-70. doi: 10.1093/nar/30.6.1364. Nucleic Acids Res. 2002. PMID: 11884634 Free PMC article.
-
N6-methyladenine DNA modification in the unicellular eukaryotic organism Tetrahymena thermophila.
Wang Y, Sheng Y, Liu Y, Pan B, Huang J, Warren A, Gao S. Wang Y, et al. Eur J Protistol. 2017 Apr;58:94-102. doi: 10.1016/j.ejop.2016.12.003. Epub 2016 Dec 23. Eur J Protistol. 2017. PMID: 28135687 Review.
-
Developmental progression of Tetrahymena through the cell cycle and conjugation.
Cole E, Sugai T. Cole E, et al. Methods Cell Biol. 2012;109:177-236. doi: 10.1016/B978-0-12-385967-9.00007-4. Methods Cell Biol. 2012. PMID: 22444146 Review.
Cited by
-
Zhao L, Gao F, Gao S, Liang Y, Long H, Lv Z, Su Y, Ye N, Zhang L, Zhao C, Wang X, Song W, Zhang S, Dong B. Zhao L, et al. Sci China Life Sci. 2021 Aug;64(8):1236-1280. doi: 10.1007/s11427-020-1915-y. Epub 2021 Apr 22. Sci China Life Sci. 2021. PMID: 33893979 Review.
-
5-Methylcytosine is not detectable in Saccharomyces cerevisiae DNA.
Proffitt JH, Davie JR, Swinton D, Hattman S. Proffitt JH, et al. Mol Cell Biol. 1984 May;4(5):985-8. doi: 10.1128/mcb.4.5.985-988.1984. Mol Cell Biol. 1984. PMID: 6374428 Free PMC article.
-
DNA synthesis, methylation and degradation during conjugation in Tetrahymena thermophila.
Harrison GS, Karrer KM. Harrison GS, et al. Nucleic Acids Res. 1985 Jan 11;13(1):73-87. doi: 10.1093/nar/13.1.73. Nucleic Acids Res. 1985. PMID: 4000922 Free PMC article.
-
Lyu C, Niu Y, Lai W, Wang Y, Wang Y, Dai P, Ma C, Chen S, Li Y, Jiang G, Liang Z, Ma W, Gao Z, Tong WM, Wang H. Lyu C, et al. Cell Discov. 2022 Apr 30;8(1):39. doi: 10.1038/s41421-022-00399-x. Cell Discov. 2022. PMID: 35501312 Free PMC article.
-
DNA methylation of viruses infecting a eukaryotic Chlorella-like green alga.
Van Etten JL, Schuster AM, Girton L, Burbank DE, Swinton D, Hattman S. Van Etten JL, et al. Nucleic Acids Res. 1985 May 24;13(10):3471-8. doi: 10.1093/nar/13.10.3471. Nucleic Acids Res. 1985. PMID: 4011432 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources