Sensory and behavioral properties of neurons in posterior parietal cortex of the awake, trained monkey - PubMed
. 1978 Jul;37(9):2258-61.
- PMID: 95977
Sensory and behavioral properties of neurons in posterior parietal cortex of the awake, trained monkey
D L Robinson et al. Fed Proc. 1978 Jul.
Abstract
Neurons in posterior parietal cortex of the awake, trained monkey respond to passive visual and/or somatosensory stimuli. In general, the receptive fields of these cells are large and nonspecific. When these neurons are studied during visually guided hand movements and eye movements, most of their activity can be accounted for by passive sensory stimulation. However, for some visual cells, the response to a stimulus is enhanced when it is to be the target for a saccadic eye movement. This enhancement is selective for eye movements into the visual receptive field since it does not occur with eye movements to other parts of the visual field. Cells that discharge in association with a visual fixation task have foveal receptive fields and respond to the spots of light used as fixation targets. Cells discharging selectively in association with different directions of tracking eye movements have directionally selective responses to moving visual stimuli. Every cell in our sample discharging in association with movement could be driven by passive sensory stimuli. We conclude that the activity of neurons in posterior parietal cortex is dependent on and indicative of external stimuli but not predictive of movement.
Similar articles
-
Mechanisms of neural integration in the parietal lobe for visual attention.
Yin TC, Mountcastle VB. Yin TC, et al. Fed Proc. 1978 Jul;37(9):2251-7. Fed Proc. 1978. PMID: 95976
-
Behavioral enhancement of visual responses of prestriate neurons of the rhesus monkey.
Robinson DL, Baizer JS, Dow BM. Robinson DL, et al. Invest Ophthalmol Vis Sci. 1980 Sep;19(9):1120-3. Invest Ophthalmol Vis Sci. 1980. PMID: 7410004
-
Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance.
Eskandar EN, Assad JA. Eskandar EN, et al. Nat Neurosci. 1999 Jan;2(1):88-93. doi: 10.1038/4594. Nat Neurosci. 1999. PMID: 10195185
-
Archambault PS, Ferrari-Toniolo S, Caminiti R, Battaglia-Mayer A. Archambault PS, et al. Vision Res. 2015 May;110(Pt B):244-56. doi: 10.1016/j.visres.2014.09.009. Epub 2014 Sep 28. Vision Res. 2015. PMID: 25264945 Review.
-
Optic ataxia as a result of the breakdown of the global tuning fields of parietal neurones.
Battaglia-Mayer A, Caminiti R. Battaglia-Mayer A, et al. Brain. 2002 Feb;125(Pt 2):225-37. doi: 10.1093/brain/awf034. Brain. 2002. PMID: 11844724 Review.
Cited by
-
Functional properties of neurons in the temporo-parietal association cortex of awake monkey.
Leinonen L, Hyvärinen J, Sovijärvi AR. Leinonen L, et al. Exp Brain Res. 1980;39(2):203-15. doi: 10.1007/BF00237551. Exp Brain Res. 1980. PMID: 6772459
-
Damage to posterior parietal cortex impairs two forms of relational learning.
Robinson S, Bucci DJ. Robinson S, et al. Front Integr Neurosci. 2012 Jul 12;6:45. doi: 10.3389/fnint.2012.00045. eCollection 2012. Front Integr Neurosci. 2012. PMID: 22807894 Free PMC article.
-
Functional (ir)Relevance of Posterior Parietal Cortex during Audiovisual Change Detection.
Oude Lohuis MN, Marchesi P, Pennartz CMA, Olcese U. Oude Lohuis MN, et al. J Neurosci. 2022 Jun 29;42(26):5229-5245. doi: 10.1523/JNEUROSCI.2150-21.2022. J Neurosci. 2022. PMID: 35641187 Free PMC article.
-
Development of eye-movement control.
Luna B, Velanova K, Geier CF. Luna B, et al. Brain Cogn. 2008 Dec;68(3):293-308. doi: 10.1016/j.bandc.2008.08.019. Epub 2008 Oct 19. Brain Cogn. 2008. PMID: 18938009 Free PMC article. Review.