The geographical spread of influenza - PubMed
- ️Thu Jan 01 1998
The geographical spread of influenza
E Bonabeau et al. Proc Biol Sci. 1998.
Abstract
How infectious diseases spread in space within one cycle of an epidemic is an important question that has received considerable theoretical attention. There are, however, few empirical studies to support theoretical approaches, because data are scarce. Weekly reports obtained since 1984 from a network of general practitioners spanning the entire French territory allows the analysis of the spatio-temporal dynamics of influenza over a fine spatial scale. This analysis indicates that diffusion over long distances, possibly due to global transportation systems, is so quick that homogeneous global mixing occurs before the epidemic builds up within infected patches. A simple model in which the total number of cases is given by the empirical time-series and cases are randomly assigned to patches according to the population weight of the patches exhibits the same spatio-temporal properties as real epidemic cycles: homogeneous mixing models constitute appropriate descriptions, except in the vicinity of the epidemic's peak, where geographic heterogeneities play a role.
Similar articles
-
Modeling optimal treatment strategies in a heterogeneous mixing model.
Choe S, Lee S. Choe S, et al. Theor Biol Med Model. 2015 Nov 25;12:28. doi: 10.1186/s12976-015-0026-x. Theor Biol Med Model. 2015. PMID: 26608713 Free PMC article.
-
Spatial and temporal dynamics of influenza outbreaks.
Onozuka D, Hagihara A. Onozuka D, et al. Epidemiology. 2008 Nov;19(6):824-8. doi: 10.1097/EDE.0b013e3181880eda. Epidemiology. 2008. PMID: 18813019
-
Modeling the epidemic waves of AH1N1/09 influenza around the world.
González-Parra G, Arenas AJ, Aranda DF, Segovia L. González-Parra G, et al. Spat Spatiotemporal Epidemiol. 2011 Dec;2(4):219-26. doi: 10.1016/j.sste.2011.05.002. Epub 2011 May 31. Spat Spatiotemporal Epidemiol. 2011. PMID: 22748221
-
The spread process of epidemic influenza in the continental United States, 1968-2008.
Malcolm BL. Malcolm BL. Spat Spatiotemporal Epidemiol. 2014 Apr;8:35-45. doi: 10.1016/j.sste.2014.01.001. Epub 2014 Jan 22. Spat Spatiotemporal Epidemiol. 2014. PMID: 24606993
-
Spatio-temporal dynamics of global H5N1 outbreaks match bird migration patterns.
Si Y, Skidmore AK, Wang T, de Boer WF, Debba P, Toxopeus AG, Li L, Prins HH. Si Y, et al. Geospat Health. 2009 Nov;4(1):65-78. doi: 10.4081/gh.2009.211. Geospat Health. 2009. PMID: 19908191
Cited by
-
Spatial heterogeneity of daphniid parasitism within lakes.
Hall SR, Duffy MA, Tessier AJ, Cáceres CE. Hall SR, et al. Oecologia. 2005 May;143(4):635-44. doi: 10.1007/s00442-005-0005-8. Epub 2005 Mar 24. Oecologia. 2005. PMID: 15909131
-
The geographic synchrony of seasonal influenza: a waves across Canada and the United States.
Schanzer DL, Langley JM, Dummer T, Aziz S. Schanzer DL, et al. PLoS One. 2011;6(6):e21471. doi: 10.1371/journal.pone.0021471. Epub 2011 Jun 28. PLoS One. 2011. PMID: 21738676 Free PMC article.
-
A deterministic model for influenza infection with multiple strains and antigenic drift.
Alfaro-Murillo JA, Towers S, Feng Z. Alfaro-Murillo JA, et al. J Biol Dyn. 2013;7(1):199-211. doi: 10.1080/17513758.2013.801523. Epub 2013 May 24. J Biol Dyn. 2013. PMID: 23701386 Free PMC article.
-
Validation of the gravity model in predicting the global spread of influenza.
Li X, Tian H, Lai D, Zhang Z. Li X, et al. Int J Environ Res Public Health. 2011 Aug;8(8):3134-43. doi: 10.3390/ijerph8083134. Epub 2011 Jul 25. Int J Environ Res Public Health. 2011. PMID: 21909295 Free PMC article.
-
The evolution of pandemic influenza: evidence from India, 1918-19.
Chandra S, Kassens-Noor E. Chandra S, et al. BMC Infect Dis. 2014 Sep 19;14:510. doi: 10.1186/1471-2334-14-510. BMC Infect Dis. 2014. PMID: 25234688 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical