rechneronline.de

Antiparallelogram - Geometry Calculator

2D Regular Polygons:
Equilateral Triangle, Square, Pentagon, Hexagon, Heptagon, Octagon, Nonagon, Decagon, Hendecagon, Dodecagon, Hexadecagon, N-gon, Polygon Ring

Other Polygons:
Triangle, Right Triangle, Isosceles Triangle, IR Triangle, 1/2 EL Triangle, Golden Triangle, Quadrilateral, Rectangle, Golden Rectangle, Rhombus, Equidiagonal Rhombus, Parallelogram, Kite, 60-90-120 Kite, Half Square Kite, Right Kite, Trapezoid, Right Trapezoid, Isosceles Trapezoid, Tri-equilateral Trapezoid, Obtuse Trapezoid, Cyclic Quadrilateral, Tangential Quadrilateral, Arrowhead, Concave Quadrilateral, Crossed Rectangle, Antiparallelogram, House-Shape, Symmetric Pentagon, Diagonally Bisected Octagon, Cut Rectangle, Concave Pentagon, Concave Regular Pentagon, Stretched Pentagon, Straight Bisected Octagon, Stretched Hexagon, Symmetric Hexagon, Semi-regular Hexagon, Parallelogon, Concave Hexagon, Arrow-Hexagon, Rectangular Hexagon, L-Shape, Sharp Kink, T-Shape, Square Heptagon, Truncated Square, Stretched Octagon, Frame, Open Frame, Grid, Cross, X-Shape, H-Shape, Threestar, Fourstar, Pentagram, Hexagram, Unicursal Hexagram, Oktagram, Star of Lakshmi, Double Star Polygon, Polygram, The Hat, Polygon

Round Forms:
Circle, Semicircle, Circular Sector, Circular Segment, Circular Layer, Circular Central Segment, Round Corner, Circular Corner, Circle Tangent Arrow, Drop Shape, Crescent, Pointed Oval, Two Circles, Lancet Arch, Knoll, Elongated Semicircle, Annulus, Semi-Annulus, Annulus Sector, Annulus Segment, Cash, Curved Rectangle, Rounded Polygon, Rounded Rectangle, Ellipse, Semi-Ellipse, Elliptical Segment, Elliptical Sector, Elliptical Ring, Stadium, Half Stadium, Stadium Segment, Spiral, Log. Spiral, Reuleaux Triangle, Cycloid, Double Cycloid, Astroid, Hypocycloid, Cardioid, Epicycloid, Parabolic Segment, Heart, Tricorn, Pointed Semicircle, Interarc Triangle, Circular Arc Triangle, Interarc Quadrangle, Intercircle Quadrangle, Circular Arc Quadrangle, Circular Arc Polygon, Claw, Half Yin-Yang, Arbelos, Salinon, Bulge, Lune, Three Circles, Polycircle, Round-Edged Polygon, Rose, Gear, Oval, Egg-Profile, Lemniscate, Squircle, Circular Square, Digon, Spherical Triangle

3D Platonic Solids:
Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron

Archimedean Solids:
Truncated Tetrahedron, Cuboctahedron, Truncated Cube, Truncated Octahedron, Rhombicuboctahedron, Truncated Cuboctahedron, Icosidodecahedron, Truncated Dodecahedron, Truncated Icosahedron, Snub Cube, Rhombicosidodecahedron, Truncated Icosidodecahedron, Snub Dodecahedron

Catalan Solids:
Triakis Tetrahedron, Rhombic Dodecahedron, Triakis Octahedron, Tetrakis Hexahedron, Deltoidal Icositetrahedron, Hexakis Octahedron, Rhombic Triacontahedron, Triakis Icosahedron, Pentakis Dodecahedron, Pentagonal Icositetrahedron, Deltoidal Hexecontahedron, Hexakis Icosahedron, Pentagonal Hexecontahedron

Johnson Solids:
Pyramids, Cupolae, Rotunda, Elongated Pyramids, Gyroelongated Pyramids, Bipyramids, Elongated Bipyramids, Gyroelongated Square Dipyramid, Gyrobifastigium, Disheptahedron, Snub Disphenoid, Sphenocorona, Disphenocingulum

Other Polyhedrons:
Cuboid, Square Pillar, Triangular Pyramid, Square Pyramid, Regular Pyramid, Pyramid, Square Frustum, Regular Frustum, Frustum, Bent Pyramid, Regular Bipyramid, Bipyramid, Bifrustum, Frustum-Pyramid, Ramp, Right Wedge, Wedge, Half Tetrahedron, Rhombohedron, Parallelepiped, Regular Prism, Prism, Oblique Prism, Anticube, Antiprism, Prismatoid, Trapezohedron, Disphenoid, Corner, General Tetrahedron, Wedge-Cuboid, Half Cuboid, Skewed Cuboid, Ingot, Skewed Three-Edged Prism, Cut Cuboid, Truncated Cuboid, Obtuse Edged Cuboid, Elongated Dodecahedron, Truncated Rhombohedron, Obelisk, Bent Cuboid, Hollow Cuboid, Hollow Pyramid, Hollow Frustum, Star Pyramid, Stellated Octahedron, Small Stellated Dodecahedron, Great Stellated Dodecahedron, Great Dodecahedron, Great Icosahedron

Round Forms:
Sphere, Hemisphere, Quarter Sphere, Spherical Corner, Cylinder, Cut Cylinder, Oblique Cylinder, Bent Cylinder, Elliptic Cylinder, Generalized Cylinder, Cone, Truncated Cone, Oblique Circular Cone, Elliptic Cone, Truncated Elliptic Cone, General Cone, General Truncated Cone, Bicone, Truncated Bicone, Pointed Pillar, Rounded Cone, Elongated Hemisphere, Drop, Spheroid, Ellipsoid, Semi-Ellipsoid, Spherical Sector, Spherical Cap, Spherical Segment, Spherical Central Segment, Double Calotte, Rounded Disc, Double Sphere, Spherical Wedge, Half Cylinder, Diagonally Halved Cylinder, Cylindrical Wedge, Cylindrical Sector, Cylindrical Segment, Flat End Cylinder, Half Cone, Conical Sector, Conical Wedge, Spherical Shell, Half Spherical Shell, Spherical Shell Cap, Cylindrical Shell, Cut Cylindrical Shell, Oblique Cylindrical Shell, Hollow Cone, Truncated Hollow Cone, Spherical Ring, Torus, Spindle Torus, Toroid, Torus Sector, Toroid Sector, Arch, Reuleaux-Tetrahedron, Capsule, Half Capsule, Capsule Segment, Double Point, Anticone, Truncated Anticone, Sphere-Cylinder, Lens, Concave Lens, Barrel, Egg Shape, Paraboloid, Hyperboloid, Oloid, Steinmetz Solids, Solid of Revolution


Anzeige

Calculations at an antiparallelogram, a crossed quadrilateral of two congruent triangles. An antiparallelogram has two pairs of opposite sides of equal length. The longer sides b intersect each other and divide into the sections p and q.
Enter the length of the short side a and two of the three values b, p and q. Choose the number of decimal places and click Calculate. Angles are calculated and displayed in degrees, here you can convert angle units.


Antiparallelogram shape for p≥q (if p<q, just switch both values):

Formulas:
b > a
b = p + q
α = arccos( (p² + q² - a²) / (2pq) )
β = arccos( (a² + q² - p²) / (2aq) )
γ = arccos( (a² + p² - q²) / (2ap) )
δ = 180° - α
s = √2p² - cos( 180° - α ) * 2p²
t = √2q² - cos( 180° - α ) * 2q²
h = √ a² - [ (s-t)/2 ]²
p = 2 * ( a + b )
A = 2 * √u/4 * (u/4-a) * (u/4-p) * (u/4-q)

Lengths, chords, height and perimeter have the same unit (e.g. meter), the area has this unit squared (e.g. square meter).

The antiparallelogram is nonconvex, it is axially symmetric to the bisecting line of the outer angles δ.

Like the parallelogram, the antiparallelogram has two pairs of sides of equal length. The sides of one pair are opposite each other, those of the other pair intersect. The angles also form two equal pairs. The two pairs of sides are antiparallel to each other. Antiparallelism is a relatively complicated geometric property for pairs of straight lines and angles, where equal angles are not opposite but adjacent.
A parallelogram can be formed from an antiparallelogram by reflecting one of the two triangles along the perpendicular to the axis of symmetry through their intersection and then connecting the adjacent points of the four corners. Conversely, but more complicated, an antiparallelogram can be formed from a parallelogram by drawing the diagonals, removing two opposite sides and then mirroring one of the triangles and rotating it accordingly. The parallelogram and antiparallelogram then have one pair of equal and one pair of different lengths.

Constructions based on an antiparallelogram are used in mechanics and kinematics. One example is four-bar linkages on a crank arm. These allow flexible deformation while maintaining the length ratios of the construction.

© Jumk.de Webprojects | Online Calculators


Anzeige