ru.wikipedia.org

Поле направлений — Википедия

Поле направлений (штрихи) и изоклины

По́ле направле́ний — геометрическая интерпретация множества линейных элементов, соответствующих системе обыкновенных дифференциальных уравнений

{\displaystyle {\dot {x}}_{i}=f_{i}(t,x_{1},...,x_{n}),i=1,...,n}.

Для системы в симметричной форме

{\displaystyle {\frac {dt}{f_{0}(t,x_{1},...,x_{n})}}={\frac {dx_{1}}{f_{1}(t,x_{1},...,x_{n})}}=...={\frac {dx_{n}}{f_{n}(t,x_{1},...,x_{n})}}}

среди направлений поля возможны ортогональные оси {\displaystyle t}.

Любая интегральная кривая системы обыкновенных дифференциальных уравнений в каждой своей точке касается отвечающего этой точке направления поля, и любая кривая, обладающая этим свойством, является интегральной кривой системы.