thereaderwiki.com

Gs alpha subunit

GNAS
Identifiers
Aliases GNAS, AHO, C20orf45, GNAS1, GPSA, GSA, GSP, NESP, POH, SCG6, SgVI, GNAS complex locus, PITA3
External IDs OMIM: 139320; MGI: 95777; HomoloGene: 55534; GeneCards: GNAS; OMA:GNAS - orthologs
Gene location (Human)
Chromosome 20 (human)
Chr. Chromosome 20 (human)[1]

Chromosome 20 (human)

Genomic location for GNAS

Genomic location for GNAS

Band 20q13.32 Start 58,839,718 bp[1]
End 58,911,192 bp[1]
Gene location (Mouse)
Chromosome 2 (mouse)
Chr. Chromosome 2 (mouse)[2]

Chromosome 2 (mouse)

Genomic location for GNAS

Genomic location for GNAS

Band 2 H4|2 97.89 cM Start 174,126,113 bp[2]
End 174,188,537 bp[2]
RNA expression pattern
Bgee
Human Mouse (ortholog)
Top expressed in
  • beta cell

  • postcentral gyrus

  • Brodmann area 46

  • Pituitary Gland

  • lateral nuclear group of thalamus

  • anterior pituitary

  • Brodmann area 10

  • entorhinal cortex

  • superior frontal gyrus

  • frontal pole
Top expressed in
  • superior cervical ganglion

  • entorhinal cortex

  • dorsomedial hypothalamic nucleus

  • perirhinal cortex

  • Pituitary Gland

  • CA3 field

  • human fetus

  • central gray substance of midbrain

  • median eminence

  • dermis
More reference expression data
BioGPS

More reference expression data
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Orthologs
Species Human Mouse
Entrez

2778

14683

Ensembl

ENSG00000087460

ENSMUSG00000027523

UniProt

O95467
P63092
P84996
Q5JWF2

P63094
Q6R0H7
Q9Z0F1
Q6R0H6

RefSeq (mRNA)
NM_000516
NM_001077488
NM_001077489
NM_001077490
NM_001309840

NM_001309842
NM_001309861
NM_001309883
NM_016592
NM_080425
NM_080426

NM_001077507
NM_001077510
NM_010309
NM_010310
NM_019690

NM_022000
NM_201616
NM_201617
NM_201618
NM_001310083
NM_001310085
NM_001364030

RefSeq (protein)
NP_000507
NP_001070956
NP_001070957
NP_001070958
NP_001296769

NP_001296771
NP_001296790
NP_001296812
NP_057676
NP_536350
NP_536351
NP_000507.1
NP_001070956.1
NP_001070957.1
NP_001070958.1
NP_001296769.1
NP_536350.2
NP_536351.1
NP_001070958.1
NP_001296812.1
NP_001296812.1
NP_536350.2

NP_001070975
NP_001070978
NP_001297012
NP_001297014
NP_034439

NP_062664
NP_068840
NP_963910
NP_963911
NP_963912
NP_001350959
NP_001070975.1
NP_001297014.1
NP_034439.2
NP_963911.1
NP_062664.2
NP_068840.2
NP_001070975.1
NP_001297014.1
NP_963911.1
NP_963912.1

Location (UCSC) Chr 20: 58.84 – 58.91 Mb Chr 2: 174.13 – 174.19 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

The Gs alpha subunit (Gαs, Gsα) is a subunit of the heterotrimeric G protein Gs that stimulates the cAMP-dependent pathway by activating adenylyl cyclase. Gsα is a GTPase that functions as a cellular signaling protein. Gsα is the founding member of one of the four families of heterotrimeric G proteins, defined by the alpha subunits they contain: the Gαs family, Gαi/Gαo family, Gαq family, and Gα12/Gα13 family.[5] The Gs-family has only two members: the other member is Golf, named for its predominant expression in the olfactory system. In humans, Gsα is encoded by the GNAS complex locus, while Golfα is encoded by the GNAL gene.

The general function of Gs is to activate intracellular signaling pathways in response to activation of cell surface G protein-coupled receptors (GPCRs). GPCRs function as part of a three-component system of receptor-transducer-effector.[6][7] The transducer in this system is a heterotrimeric G protein, composed of three subunits: a Gα protein such as Gsα, and a complex of two tightly linked proteins called Gβ and Gγ in a Gβγ complex.[6][7] When not stimulated by a receptor, Gα is bound to GDP and to Gβγ to form the inactive G protein trimer.[6][7] When the receptor binds an activating ligand outside the cell (such as a hormone or neurotransmitter), the activated receptor acts as a guanine nucleotide exchange factor to promote GDP release from and GTP binding to Gα, which drives dissociation of GTP-bound Gα from Gβγ.[6][7] In particular, GTP-bound, activated Gsα binds to adenylyl cyclase to produce the second messenger cAMP, which in turn activates the cAMP-dependent protein kinase (also called Protein Kinase A or PKA).[6][7] Cellular effects of Gsα acting through PKA are described here.

Although each GTP-bound Gsα can activate only one adenylyl cyclase enzyme, amplification of the signal occurs because one receptor can activate multiple copies of Gs while that receptor remains bound to its activating agonist, and each Gsα-bound adenylyl cyclase enzyme can generate substantial cAMP to activate many copies of PKA.[8]

The G protein-coupled receptors that couple to the Gs family proteins include:

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000087460Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000027523Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Ellis C, Nature Reviews Drug Discovery GPCR Questionnaire Participants (July 2004). "The state of GPCR research in 2004". Nature Reviews. Drug Discovery. 3 (7): 575, 577–626. doi:10.1038/nrd1458. PMID 15272499. S2CID 33620092.
  6. ^ a b c d e Gilman AG (1987). "G proteins: transducers of receptor-generated signals". Annual Review of Biochemistry. 56: 615–649. doi:10.1146/annurev.bi.56.070187.003151. PMID 3113327. S2CID 33992382.
  7. ^ a b c d e Rodbell M (1995). "Nobel Lecture: Signal transduction: Evolution of an idea". Bioscience Reports. 15 (3): 117–133. doi:10.1007/bf01207453. PMC 1519115. PMID 7579038. S2CID 11025853.
  8. ^ Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia AS, White LE, eds. (2007). Neuroscience (4th ed.). New York: W. H. Freeman. p. 155. ISBN 978-0-87893-697-7.