web.archive.org

Arch Intern Med -- Low Bone Mass in Subjects on a Long-term Raw Vegetarian Diet, March 28, 2005, Fontana et al. 165 (6): 684

  • ️Mon Mar 28 2005

Low Bone Mass in Subjects on a Long-term Raw Vegetarian Diet

Luigi Fontana, MD, PhD; Jennifer L. Shew, BS; John O. Holloszy, MD; Dennis T. Villareal, MD

Arch Intern Med. 2005;165:684-689.

ABSTRACT


Background  Little is known regarding the health effects of a raw food (RF) vegetarian diet.

Methods  We performed a cross-sectional study on 18 volunteers (mean ± SD age, 54.2 ± 11.5 years; male/female ratio, 11:7) on a RF vegetarian diet for a mean of 3.6 years and a comparison age- and sex-matched group eating typical American diets. We measured body composition, bone mineral content and density, bone turnover markers (C-telopeptide of type I collagen and bone-specific alkaline phosphatase), C-reactive protein, 25-hydroxyvitamin D, insulin-like growth factor 1, and leptin in serum.

Results  The RF vegetarians had a mean ± SD body mass index (calculated as weight in kilograms divided by the square of height in meters) of 20.5 ± 2.3, compared with 25.4 ± 3.3 in the control subjects. The mean bone mineral content and density of the lumbar spine (P= .003 and P<.001, respectively) and hip (P = .01 and P<.001, respectively) were lower in the RF group than in the control group. Serum C-telopeptide of type I collagen and bone-specific alkaline phosphatase levels were similar between the groups, while the mean 25-hydroxyvitamin D concentration was higher in the RF group than in the control group (P<.001). The mean serum C-reactive protein (P = .03), insulinlike growth factor 1 (P = .002), and leptin (P = .005) were lower in the RF group.

Conclusion  A RF vegetarian diet is associated with low bone mass at clinically important skeletal regions but is without evidence of increased bone turnover or impaired vitamin D status.



INTRODUCTION

Raw food (RF) vegetarians believe in eating only plant-derived foods that have not been cooked, processed, or otherwise altered from their natural state. Because of their low calorie and low protein intake, RF vegetarians have a low body mass index (BMI) and a low total body fat content.1 It is well documented that a low BMI and weight loss are strongly associated with low bone mass and increased fracture risk,2 while obesity protects against osteoporosis.3 However, the underlying mechanisms are not entirely clear. Bone protective effects of obesity involve increased weight bearing4 and increased aromatization of androgen to estrogen in adipose tissue.5

The availability of individuals eating a RF vegetarian diet made it possible for us to investigate bone mass and bone metabolism in people on a low calorie and low protein diet. In this article, we report data on bone mass, markers of bone turnover, and circulating factors that affect bone metabolism such as 25-hydroxyvitamin D and C-reactive protein (CRP) in individuals who have been eating a RF diet for 11/2 to 10 years.


METHODS


STUDY PARTICIPANTS

Eighteen individuals, 7 women and 11 men, who strictly adhere to a RF vegetarian diet were recruited through advertisements at the St Louis Vegetarian Society and in RF online magazines. Ten were from the St Louis area, and the others came to Washington University Medical Center from other cities in the United States. None of the participants were concerned about their bone health status. Their mean age was 54.2 ± 11.5 years (age range, 33-85 years). They had been eating a RF diet for a mean of 3.6 years (range, 11/2 to 10 years). None of the subjects had a history or clinical evidence of chronic disease (including cardiovascular, lung, gastrointestinal, and autoimmune disease; type 2 diabetes mellitus; and cancer) based on medical history, complete physical examination, routine biochemical studies, hematologic evaluation, and urinalysis. They were all nonsmokers. Eighteen individuals eating a typical American diet who were matched with the RF group in terms of age, sex, and socioeconomic status served as a control group. Five of 7 women in the RF group were postmenopausal, and 6 of 7 women in the control group were postmenopausal. None of the participants in this study were taking drugs that affect bone metabolism (eg, bisphosphonates, hormone therapy, and corticosteroids) or other medications that could affect the variables that were measured. All of the study participants had stable weight (ie, <2-kg weight change in the preceding 6 months). Informed consent was obtained from all subjects. This study was approved by the Human Studies Committee of Washington University School of Medicine.

ANTHROPOMETRIC, BODY COMPOSITION, AND BONE DENSITY MEASUREMENTS

Height was measured without shoes to the nearest 0.1 cm. Body weight was obtained on a balance scale in the morning after a 12-hour fast. Body mass index was calculated as weight in kilograms divided by the square of height in meters. Bone mineral content (BMC) and bone mineral density (BMD) of the total body, lumbar spine (L2-L4), and proximal femur were measured by dual-energy x-ray absorptiometry using a QDR-1000/W instrument (Hologic Inc, Waltham, Mass), as described by Salamone et al.6 Assessments of test-retest reliability of BMC and BMD measurements yielded intraclass correlation coefficients that were greater than 0.98 for all sites of interest. Regarding precision, the coefficients of variation for BMC and BMD were all less than 1.5%. Dual-energy x-ray absorptiometry was also used to estimate body composition using version 5.71 of the enhanced whole-body analysis software (Hologic Inc). The mean ± SD precision of measuring total mass, fat mass, bone mineral mass, and nonbone fat-free mass was 0.9% ± 0.4%, 1.6% ± 1.0%, 1.8% ± 0.3%, and 1.8% ± 0.9%, respectively.

BLOOD ANALYSES

A venous blood sample was taken after subjects had fasted for at least 12 hours. Commercial enzyme-linked immunosorbent assay kits were used to measure serum C-telopeptide of type I collagen (Nordic Bioscience Diagnostics, Herlev, Denmark), bone-specific alkaline phosphatase (Quidel Corporation, San Diego, Calif), 25-hydroxyvitamin D (Immunodiagnostic Systems Limited, Boldon, England), and high-sensitivity CRP (ALPCO Diagnostics, Windham, NH) concentrations. Commercially available radioimmunoassay kits were used to measure insulinlike growth factor 1 (IGF-1) (Diagnostic Products Group, Los Angeles, Calif) and leptin (Linco Research, St Louis); the tests were performed by the Radioimmunoassay Core Laboratory, Washington University Diabetes Research and Training Center. Coefficients of variation for these measurements were less than 8.9%.

DIETARY ASSESSMENT

The study participants were instructed by a research dietician to record for 7 consecutive days in food diaries, at the time of consumption, all foods and beverages consumed, preparation methods, and approximate portion sizes. To assist with portion size determinations, sets of measuring spoons and cups were provided to all participants, and all food diaries had a ruler imprinted on the back cover. The food record was analyzed using the Nutrition Data System for Research software version 4.03/31 from the Nutrition Coordinating Center at the University of Minnesota, Minneapolis. The database compiles information regarding 117 nutrients. The nutrients of interest are calories, total fat, total carbohydrate, total protein, animal protein, vegetable protein, calcium, saturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, sucrose, starch, soluble fiber, insoluble fiber, folate, vitamin B12, all of the fatty acids (4:0 to 22:6), all of the amino acids, phytic acid, and trans-fatty acids.7

STATISTICAL ANALYSIS

The unpaired t test was used for normally distributed variables with approximately equal SDs. For variables not normally distributed or with unequal SDs, the Wilcoxon signed rank test was used. Statistical significance was set at P≤.05. Data were analyzed by using SPSS for Windows software version 12.0 (SPSS Inc, Chicago, Ill). Values are expressed as mean ± SD, except in the Figure, in which data are given as mean ± SE.

Figure. Comparison of T scores in control subjects and individuals on a raw food (RF) vegetarian diet in men (A) and in women (B). The P values represent the significance of differences between the control group and the vegetarian group. Data are given as mean ± SE.



RESULTS


BODY WEIGHT AND BODY COMPOSITION

Body mass index was significantly lower in the RF group than in the control group (20.5 ± 2.3 vs 25.4 ± 3.3) (Table 1). The BMI values for the individuals in the control group were similar to the mean range for middle-aged people in the United States.8 Total body fat and trunk fat were also lower in the RF group (Table 2).

Table 1. Anthropometric Characteristics of Raw Food (RF) and Control Subjects*



Table 2. Body Composition Characteristics of Raw Food (RF) and Control Subjects*


BMC AND BMD

The mean BMC (Table 3) and BMD (Table 4) in the RF group were significantly lower than in the control group at all sites. In men and women, the RF group had significantly lower BMC and BMD values than the control group at the total body, lumbar spine, total hip, and trochanter sites. The mean T scores in the RF group were significantly lower than in the control group at most sites (Figure). None of the participants had clinical or dual-energy x-ray absorptiometry evidence of bone fractures.

Table 3. Bone Mineral Content of Raw Food (RF) and Control Subjects*



Table 4. Bone Mineral Density of Raw Food (RF) and Control Subjects*


MARKERS OF BONE TURNOVER

The serum C-telopeptide of type I collagen and bone-specific alkaline phosphatase concentrations in the RF group were not significantly different from those in the control group (Table 5). The serum 25-hydroxyvitamin D concentrations were significantly higher in the RF group than in the control group (42 ± 20 vs 19 ± 12 ng/mL, P<.001).

Table 5. Markers of Bone Turnover of Raw Food (RF) and Control Subjects*


LEPTIN, IGF-1, AND CRP

Serum concentrations of leptin (2.8 ± 1.7 vs 8.7 ± 7.8 ng/mL, P = .005) and IGF-1 (124 ± 35 vs 171 ± 51 ng/mL, P = .002) were lower in the RF group than in the control group. The serum CRP concentrations of the individuals in the RF group were also lower than in the control group (0.6 ± 0.8 vs 1.8 ± 2.4 mg/L, P = .03).

NUTRIENT INTAKE

Nutrient intakes differed significantly between the groups. The RF vegetarians ate a variety of raw vegetables, fruits, nuts, seeds, sprouted grains, and cereals, dressed with olive oil (1285-2432 kcal/d; approximately 9.1% of calories from protein, 43.2% from fat, and 47.7% from complex carbohydrates). All of them strictly avoided cooked and processed foods containing trans-fatty acids, highly glycemic foods, and foods of animal origin. Their mean daily dietary intakes of calcium and vitamin D (calciferol) were low, 579 ± 260 mg/d and 16 ± 36 U/d, respectively. The control group ate usual American diets containing foods of plant and animal origin (1976-3537 kcal/d; approximately 17.9% of calories from protein, 32.1% from fat, and 50.0% from carbohydrates). Their mean daily dietary intakes of calcium and vitamin D were 1093 ± 394 mg/d and 348 ± 192 U/d, respectively.


COMMENT


In this cross-sectional study on 18 individuals eating a RF vegetarian diet, we found significantly lower BMC and BMD at the lumbar spine and hip sites compared with age- and sex-matched individuals eating a typical American diet. Osteoporosis is a complex multifactorial disease, characterized by reduced bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture risk.9 It is well documented that diet plays an important role in modulating bone metabolism through changes in body weight and composition, hormonal status, and nutrient availability.10 In particular, low body weight and low BMI are strongly associated with low bone mass and increased fracture risk.2 In our study, body weight, BMI, and total body fat were markedly lower in the RF group than in the control group. We also found that total body, lumbar spine, total hip, and trochanter BMC and BMD were markedly reduced in men and women in the RF group.

Surprisingly, serum C-telopeptide of type I collagen11 and bone-specific alkaline phosphatase,12 well-accepted markers of bone resorption and formation, respectively, were not significantly different between the 2 groups. This finding provides evidence that these RF vegetarians are in a steady state in regard to their bone turnover and suggests that their low bone mass may be due to a transient increase in bone degradation or decrease in bone synthesis that occurred during the early adaptive weight loss response to the RF diet. Although low bone mass is a risk factor for fracture, bone quality also plays a role.13 It is therefore possible that RF vegetarians with a low bone mass may not have an increased incidence of fractures because of good bone quality. Clearly, it will be necessary to follow up a large number of RF vegetarians for a sufficiently long period to determine whether they have an increased risk of developing fractures.

Evidence that bone quality plays an important role in determining fracture risk is provided by the finding that persons with type 2 diabetes mellitus with a high BMI have increased bone fracture risk, despite a high bone mass.14 Rodent models also provide support for the hypothesis that diabetic bone has poorer quality that is not explained by bone mass.15-16 Changes in collagen chemical and mechanical properties due to glycosylation, as well as oxidative and inflammatory modifications, may play a major role in increasing bone fracture risk. It has been shown that increased interleukin 6 production after menopause is associated with increased bone resorption and bone loss.17 Interleukin 6 produced by osteoblasts and mononuclear cells is critical in promoting osteoclast differentiation and activation in bone.18 The recent discovery of the importance of osteoprotegerin and the receptor activator of nuclear factor ligand in modulating osteoclast formation and activity provides further support for the importance of inflammation in determining the rate of bone turnover and quality.19 Older frail people tend to have high levels of interleukin 6 and tumor necrosis factor {alpha}, which are associated with sarcopenia and osteoporosis.20-21 Therefore, it is possible that, in people with chronic systemic inflammation, osteoporosis fracture risk may involve aspects of bone quality other than bone mass. In our study, circulating levels of CRP were significantly lower in the RF group than in the control group, suggesting a low level of systemic inflammation. C-reactive protein is an acute-phase response molecule, produced by the liver in response to circulating levels of interleukin 6, which is a good marker of inflammation.22

Serum leptin concentration was markedly lower in the RF group compared with the control group. Leptin is associated with antiosteogenic activity in mice, mediated by hypothalamic pathways and the sympathetic nervous system.23-24 However, cross-sectional studies on humans have provided conflicting results, with some supporting an antiosteogenic effect of leptin25-26 and others supporting an osteogenic effect of leptin.27-28 Leptin is secreted by white adipose tissue, and its circulating levels are correlated with the size of the fat mass.29 Lean people have low body fat and therefore lower circulating leptin levels that are independent of their systemic inflammatory status. The discrepancies between the studies on the role of leptin in bone turnover in humans may be because of confounding effects of differences in the levels of proinflammatory cytokines in the subjects studied. However, if leptin has an antiosteogenic effect, reducing this effect by lowering serum leptin clearly did not protect against development of osteoporosis in the RF vegetarians.

Serum IGF-1 concentrations were markedly lower in the RF vegetarians than in the control group. Insulinlike growth factor 1, a potent growth factor regulated by energy and protein intake, seems to play an important role in the acquisition and maintenance of bone.30 However, cross-sectional studies of the links between serum IGF-1 and bone metabolism have also shown conflicting results. Serum IGF-1 has been reported to be positively associated with bone mass at different skeletal sites in postmenopausal women, and low concentrations of IGF-1 have been observed in patients with spinal fractures.31-32 Others found no association between serum IGF-1 and bone mass33 or between control subjects and patients with fracture.34 The discrepancies between the studies on humans may be because of confounding effects of differences in the levels of proinflammatory cytokines in the populations studied. An antagonistic relationship between the proinflammatory cytokines and IGF-1 is generally observed during degenerative conditions.35-36 However, in the RF vegetarians, the levels of inflammation appear to be extremely low as reflected in CRP concentrations, and low IGF-1 levels are therefore due to the low calorie and low protein intake30 and not due to chronic inflammation.

In our RF group, serum 25-hydroxyvitamin D concentrations were markedly higher than in the control group. Dietary intake of 25-hydroxyvitamin D was extremely low in the RF group, and therefore their high serum values can be explained in part by a greater exposure to sunlight. Indeed, questioning of our RF subjects revealed that they generally made an effort to spend time in the sun, including sunbathing. Moreover, because vitamin D is predominantly stored in adipose tissue37 and obesity is associated with decreased vitamin D bioavailability,38 it is possible that the markedly diminished adipose mass in the RF group, in addition to regular sun exposure, may have contributed to their higher circulating vitamin D levels. The finding of high vitamin D levels in the RF group appears to exclude secondary hyperparathyroidism as a cause of the low bone mass.

Our study has limitations. Our sample size was small, and we recruited a convenience sample of individuals on long-term RF diets primarily through advertisement. All of them were convinced of the beneficial effects of a RF diet and were motivated to confirm this belief by participating in our study. Although we think it is likely that the low bone mass is due to bone loss after institution of a RF diet, because this is a cross-sectional study, we cannot completely exclude the possibility that this could also be due to low peak bone mass.

In conclusion, the results of this cross-sectional study of 18 individuals on a RF diet provide preliminary evidence that a RF diet is associated with low bone mass at clinically important skeletal regions. However, evidence of increased bone turnover or impaired vitamin D status was not found.


AUTHOR INFORMATION


Correspondence: Luigi Fontana, MD, PhD, Section of Applied Physiology, Division of Geriatrics and Nutritional Science, Department of Internal Medicine, Washington University School of Medicine, Campus Box 8113, 4566 Scott Ave, St Louis, MO 63110 (lfontana{at}im.wustl.edu).

Accepted for Publication: October 18, 2004.

Funding/Support: This research was supported by General Clinical Research Center grant RR00036, Diabetes Research and Training Center grant DK20579, and Clinical Nutrition Research Unit grant DK56351 from the National Institutes of Health, Bethesda, Md.

Acknowledgment: We are grateful to the participants for their cooperation and to the staff of the Human Applied Physiology Laboratory and the nurses of the General Clinical Research Center at Washington University School of Medicine for their skilled assistance in the performance of this study.

Financial Disclosure: None.

Author Affiliations: Section of Applied Physiology, Division of Geriatrics and Nutritional Science, Department of Internal Medicine, Washington University School of Medicine, St Louis, Mo (Drs Fontana, Holloszy, and Villareal and Ms Shew); and the Division of Food Science, Human Nutrition, and Health, Istituto Superiore di Sanitá, Rome, Italy (Dr Fontana).


REFERENCES


1. Koebnick C, Strassner C, Hoffmann I, Leitzmann C. Consequences of a long-term raw food diet on body weight and menstruation: results of a questionnaire survey. Ann Nutr Metab. 1999;43:69-79. FULL TEXT | ISI | PUBMED

2. Ravn P, Cizza G, Bjarnason NH, et al, Early Postmenopausal Intervention Cohort (EPIC) Study Group. Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women. J Bone Miner Res. 1999;14:1622-1627. FULL TEXT | ISI | PUBMED

3. Tremollieres FA, Pouilles JM, Ribot C. Vertebral postmenopausal bone loss is reduced in overweight women: a longitudinal study in 155 early postmenopausal women. J Clin Endocrinol Metab. 1993;77:683-686. ABSTRACT

4. Slemenda C. Body composition and skeletal density: mechanical loading or something more? J Clin Endocrinol Metab. 1995;80:1761-1763. FULL TEXT | ISI | PUBMED

5. Frumar AM, Meldrum DR, Geola F, et al. Relationship of fasting urinary calcium to circulating estrogen and body weight in postmenopausal women. J Clin Endocrinol Metab. 1980;50:70-75. FREE FULL TEXT

6. Salamone LM, Fuerst T, Visser M, et al. Measurement of fat mass using DEXA: a validation study in elderly adults. J Appl Physiol. 2000;89:345-352. FREE FULL TEXT

7. Schakel SF, Sievert YA, Buzzard IM. Sources of data for developing and maintaining a nutrient database. J Am Diet Assoc. 1988;88:1268-1271. ISI | PUBMED

8. Kuczmarski RJ, Carroll MD, Flegal KM, Troiano RP. Varying body mass index cutoff points to describe overweight prevalence among U.S. adults: NHANES III (1988 to 1994). Obes Res. 1997;5:542-548. ISI | PUBMED

9. Karsenty G. The complexities of skeletal biology. Nature. 2003;423:316-318. FULL TEXT | ISI | PUBMED

10. Ilich JZ, Kerstetter JE. Nutrition in bone health revisited: a study beyond calcium. J Am Coll Nutr. 2000;19:715-737. FREE FULL TEXT

11. Johnell O, Oden A, De Laet C, Garnero P, Delmas PD, Kanis JA. Biochemical indices of bone turnover and the assessment of fracture probability. Osteoporosis Int. 2002;13:523-526. FULL TEXT | ISI | PUBMED

12. Ross PD, Kress BC, Parson RE, Wasnich RD, Armour KA, Mizrahi IA. Serum bone alkaline phosphatase and calcaneus bone density predict fractures: a prospective study. Osteoporosis Int. 2000;11:76-82. FULL TEXT | ISI | PUBMED

13. Bouxsein ML. Bone quality: where do we go from here? Osteoporosis Int. 2003;14(suppl 5):118-127.

14. Schwartz AV. Diabetes mellitus: does it affect bone? Calcif Tissue Int. 2003;73:515-519. FULL TEXT | ISI | PUBMED

15. Verhaeghe J, Suiker AM, Einhorn TA, et al. Brittle bones in spontaneously diabetic female rats cannot be predicted by bone mineral measurements: studies in diabetic and ovariectomized rats. J Bone Miner Res. 1994;9:1657-1667. ISI | PUBMED

16. Reddy GK, Stehno-Bittel L, Hamade S, Enwemeka CS. The biomechanical integrity of bone in experimental diabetes. Diabetes Res Clin Pract. 2001;54:1-8. ISI | PUBMED

17. Scheidt-Nave C, Bismar H, Leidig-Bruckner G, et al. Serum interleukin 6 is a major predictor of bone loss in women specific to the first decade past menopause. J Clin Endocrinol Metab. 2001;86:2032-2042. FREE FULL TEXT

18. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21:115-137. FREE FULL TEXT

19. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337-342. FULL TEXT | PUBMED

20. Ershler WB, Sun WH, Binkley N, et al. Interleukin-6 and aging: blood levels and mononuclear cell production increase with advancing age and in vitro production is modifiable by dietary restriction. Lymphokine Cytokine Res. 1993;12:225-230. ISI | PUBMED

21. Cohen HJ, Pieper CF, Harris T, Rao KM, Currie MS. The association of plasma IL-6 levels with functional disability in community-dwelling elderly. J Gerontol A Biol Sci Med Sci. 1997;52:M201-M208.

22. Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J. 1990;265:621-636. ISI | PUBMED

23. Elefteriou F, Takeda S, Liu X, Armstrong D, Karsenty G. Monosodium glutamate–sensitive hypothalamic neurons contribute to the control of bone mass. Endocrinology. 2003;144:3842-3847. FREE FULL TEXT

24. Takeda S, Elefteriou F, Levasseur R, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111:305-317. FULL TEXT | ISI | PUBMED

25. Sato M, Takeda N, Sarui H, et al. Association between serum leptin concentrations and bone mineral density, and biochemical markers of bone turnover in adult men. J Clin Endocrinol Metab. 2001;86:5273-5276. FREE FULL TEXT

26. Blum M, Harris SS, Must A, et al. Leptin, body composition and bone mineral density in premenopausal women. Calcif Tissue Int. 2003;73:27-32. FULL TEXT | ISI | PUBMED

27. Iwamoto I, Douchi T, Kosha S, Murakami M, Fujino T, Nagata Y. Relationships between serum leptin level and regional bone mineral density, bone metabolic markers in healthy women. Acta Obstet Gynecol Scand. 2000;79:1060-1064. FULL TEXT | ISI | PUBMED

28. Odabasi E, Ozata M, Turan M, et al. Plasma leptin concentrations in postmenopausal women with osteoporosis. Eur J Endocrinol. 2000;142:170-173. ABSTRACT

29. Baile CA, Della-Fera MA, Martin RJ. Regulation of metabolism and body fat mass by leptin. Annu Rev Nutr. 2000;20:105-127. FULL TEXT | ISI | PUBMED

30. Thissen JP, Ketelslegers JM, Underwood LE. Nutritional regulation of the insulin-like growth factors. Endocr Rev. 1994;15:80-101. FREE FULL TEXT

31. Sugimoto T, Nishiyama K, Kuribayashi F, Chihara K. Serum levels of insulin-like growth factor (IGF) I, IGF-binding protein (IGFBP)–2, and IGFBP-3 in osteoporotic patients with and without spinal fractures. J Bone Miner Res. 1997;12:1272-1279. FULL TEXT | ISI | PUBMED

32. Gamero P, Sornay-Rendu E, Delmas PD. Low serum IGF-1 and occurrence of osteoporotic fractures in postmenopausal women. Lancet. 2000;355:898-899. FULL TEXT | ISI | PUBMED

33. Collins D, Woods A, Herd R, et al. Insulin-like growth factor–I and bone mineral density. Bone. 1998;23:13-16. PUBMED

34. Kassem M, Brixen K, Blum W, Mosekilde L, Eriksen EF. No evidence for reduced spontaneous or growth-hormone–stimulated serum levels of insulin-like growth factor (IGF)–I, IGF-II or IGF binding protein 3 in women with spinal osteoporosis. Eur J Endocrinol. 1994;131:150-155. FREE FULL TEXT

35. De Benedetti F, Alonzi T, Moretta A, et al. Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor–I: a model for stunted growth in children with chronic inflammation. J Clin Invest. 1997;99:643-650. ISI | PUBMED

36. Wolf M, Bohm S, Brand M, Kreymann G. Proinflammatory cytokines interleukin 1 {beta} and tumor necrosis factor {alpha} inhibit growth hormone stimulation of insulin-like growth factor I synthesis and growth hormone receptor mRNA levels in cultured rat liver cells. Eur J Endocrinol. 1996;135:729-737. FREE FULL TEXT

37. Liel Y, Ulmer E, Shary J, Hollis BW, Bell NH. Low circulating vitamin D in obesity. Calcif Tissue Int. 1988;43:199-201. ISI | PUBMED

38. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72:690-693. FREE FULL TEXT

Add to CiteULike CiteULike   Add to Connotea Connotea   Add to Del.icio.us Del.icio.us   Add to Digg Digg   Add to Reddit Reddit   Add to Technorati Technorati     What's this?

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES

Effects of dietary calcium compared with calcium supplements on estrogen metabolism and bone mineral density
Napoli et al.
Am. J. Clin. Nutr. 2007;85:1428-1433.
ABSTRACT | FULL TEXT

Long-Term Consumption of a Raw Food Diet Is Associated with Favorable Serum LDL Cholesterol and Triglycerides but Also with Elevated Plasma Homocysteine and Low Serum HDL Cholesterol in Humans,2
Koebnick et al.
J. Nutr. 2005;135:2372-2378.
ABSTRACT | FULL TEXT