web.archive.org

Jensen's Inequality -- from Wolfram MathWorld

  • ️Weisstein, Eric W.
Wolfram MathWorld
Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology Alphabetical Index New in MathWorld

If p_1, ..., p_n are positive numbers which sum to 1 and f is a real continuous function that is convex, then

 f(sum_(i=1)^np_ix_i)<=sum_(i=1)^np_if(x_i).

(1)

If f is concave, then the inequality reverses, giving

 f(sum_(i=1)^np_ix_i)>=sum_(i=1)^np_if(x_i).

(2)

The special case of equal p_i=1/n with the concave function lnx gives

 ln(1/nsum_(i=1)^nx_i)>=1/nsum_(i=1)^nlnx_i,

(3)

which can be exponentiated to give the arithmetic mean-geometric mean inequality

 (x_1+x_2+...+x_n)/n>=RadicalBox[{{x, _, 1}, {x, _, 2}, ..., {x, _, n}}, n].

(4)

Here, equality holds iff x_1=x_2=...=x_n.


See also

Concave Function, Convex Function, Jensen's Formula

Explore with Wolfram|Alpha

References

Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, p. 1101, 2000.Hardy, G. H.; Littlewood, J. E.; and Pólya, G. "Some Theorems Concerning Monotonic Functions." §3.14 in Inequalities, 2nd ed. Cambridge, England: Cambridge University Press, pp. 83-84, 1988.Jensen, J. L. W. V. "Sur les fonctions convexes et les inégalités entre les valeurs moyennes." Acta Math. 30, 175-193, 1906.Krantz, S. G. "Jensen's Inequality." §9.1.3 in Handbook of Complex Variables. Boston, MA: Birkhäuser, p. 118, 1999.

Referenced on Wolfram|Alpha

Jensen's Inequality

Cite this as:

Weisstein, Eric W. "Jensen's Inequality." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/JensensInequality.html

Subject classifications