Jensen's Inequality -- from Wolfram MathWorld
- ️Weisstein, Eric W.
If , ...,
are positive
numbers which sum to 1 and
is a real continuous function that is convex,
then
(1) |
If is concave,
then the inequality reverses, giving
(2) |
The special case of equal with the
concave function
gives
(3) |
which can be exponentiated to give the arithmetic mean-geometric mean inequality
(4) |
Here, equality holds iff .
See also
Concave Function, Convex Function, Jensen's Formula
Explore with Wolfram|Alpha
References
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, p. 1101, 2000.Hardy, G. H.; Littlewood, J. E.; and Pólya, G. "Some Theorems Concerning Monotonic Functions." §3.14 in Inequalities, 2nd ed. Cambridge, England: Cambridge University Press, pp. 83-84, 1988.Jensen, J. L. W. V. "Sur les fonctions convexes et les inégalités entre les valeurs moyennes." Acta Math. 30, 175-193, 1906.Krantz, S. G. "Jensen's Inequality." §9.1.3 in Handbook of Complex Variables. Boston, MA: Birkhäuser, p. 118, 1999.
Referenced on Wolfram|Alpha
Cite this as:
Weisstein, Eric W. "Jensen's Inequality." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/JensensInequality.html