engineeringtoolbox.com

Compressible Gas Flow - Entropy

The entropy change in a compressible gas flow can be expressed as

ds = cv ln(T2 / T1) + R ln(ρ1 / ρ2)                    (1)

or

ds = cp ln(T2 / T1) - R ln(p2 / p1)                      (2)

where

ds = change in entropy (kJ)

cv = specific heat capacity at a constant volume process (kJ/kgK)

cp = specific heat capacity at a constant pressure process (kJ/kgK)

T = absolute temperature (K)

R = individual gas constant (kJ/kgK)

ρ = density of gas (kg/m3)

p = absolute pressure (Pa, N/m2)

Example - Entropy Change in an Air Heating Process

Air - 10 kg - is heated at constant volume from temperature 20 oC and 101325 N/m2 to a final pressure of 405300 N/m2.

The final temperature in the heated air can be calculated with the ideal gas equation :

p v = R T                       (3)

where

v = volume (m3)

The ideal gas equation (3) can be transformed to express the volume before heating:

v1 = R T1 / p1                        (4)

Since v1 = v2 the ideal gas equation (3) after heating can be expressed as:

p2 v1 = R T2                          (5)

or transformed to express the final temperature:

T2 = p2 v1 / R                      (6)

Combining (5) and (6):

T2 = p2 (R T1 / p1) / R

    = p2 T1 / p1                          (7)

    = (405300 N/m2) (273 K + 20 K) / (101325 N/m2)

    = 1172 K - the final gas temperature

The change in entropy can be expressed by (2)

ds = cp ln(T2 / T1) - R ln(p2 / p1)

ds = (1.05 kJ/kgK) ln((1172 K) / (293 K)) - (0.33 kJ/kgK) ln((405300 N/m2) / (101325 N/m2))

= 1 (kJ/kgK)

Total change in entropy:

dS = (1 kJ/kgK) (10 kg)

= 10 (kJ/K)