nature.com

Early-warning signals for critical transitions - Nature

  • ️Sugihara, George
  • ️Thu Sep 03 2009
  • Venegas, J. G. et al. Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature 434, 777–782 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Litt, B. et al. Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. Neuron 30, 51–64 (2001)

    Article  CAS  PubMed  Google Scholar 

  • McSharry, P. E., Smith, L. A. & Tarassenko, L. Prediction of epileptic seizures: are nonlinear methods relevant? Nature Med. 9, 241–242 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Kambhu, J., Weidman, S. & Krishnan, N. New Directions for Understanding Systemic Risk: A Report on a Conference Cosponsored by the Federal Reserve Bank of New York and the National Academy of Sciences (The National Academies Press, 2007)

    Google Scholar 

  • May, R. M., Levin, S. A. & Sugihara, G. Ecology for bankers. Nature 451, 893–895 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008)

    Article  ADS  CAS  PubMed  MATH  PubMed Central  Google Scholar 

  • Scheffer, M. et al. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis Report (Island, 2005)

  • Schroeder, M. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise (Freeman, 1991)

    MATH  Google Scholar 

  • Kuznetsov, Y. A. Elements of Applied Bifurcation Theory (Springer, 1995)

    Book  MATH  Google Scholar 

  • Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, 2009)This book is an introduction to the theory of critical transitions with examples from ecosystems, climate dynamics and social systems.

    Book  Google Scholar 

  • Wissel, C. A universal law of the characteristic return time near thresholds. Oecologia 65, 101–107 (1984)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zahler, R. S. & Sussmann, H. J. Claims and accomplishments of applied catastrophe theory. Nature 269, 759–763 (1977)

    Article  ADS  Google Scholar 

  • Bagowski, C. P. & Ferrell, J. E. Bistability in the JNK cascade. Curr. Biol. 11, 1176–1182 (2001)

    Article  CAS  PubMed  Google Scholar 

  • May, R. M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471–477 (1977)

    Article  ADS  Google Scholar 

  • Van Nes, E. H. & Scheffer, M. Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. Am. Nat. 169, 738–747 (2007)This paper shows that recovery rate after disturbances is a good indicator of the proximity of a critical threshold.

    Article  PubMed  Google Scholar 

  • Ovaskainen, O. & Hanski, I. Transient dynamics in metapopulation response to perturbation. Theor. Popul. Biol. 61, 285–295 (2002)

    Article  PubMed  MATH  Google Scholar 

  • Ives, A. R. Measuring resilience in stochastic systems. Ecol. Monogr. 65, 217–233 (1995)

    Article  Google Scholar 

  • Kleinen, T., Held, H. & Petschel-Held, G. The potential role of spectral properties in detecting thresholds in the Earth system: application to the thermohaline circulation. Ocean Dyn. 53, 53–63 (2003)

    Article  ADS  Google Scholar 

  • Livina, V. N. & Lenton, T. M. A modified method for detecting incipient bifurcations in a dynamical system. Geophys. Res. Lett. 34, L03712 (2007)

    Article  ADS  Google Scholar 

  • Held, H. & Kleinen, T. Detection of climate system bifurcations by degenerate fingerprinting. Geophys. Res. Lett. 31, L23207 (2004)This paper shows that autocorrelation increases in the vicinity of a bifurcation in a model of the thermohaline circulation.

    Article  ADS  Google Scholar 

  • Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008)This paper shows that autocorrelation increased before eight well-known climate transitions in the past, and describes the methodology of data processing required to do such an analysis.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenton, T. M. et al. Using GENIE to study a tipping point in the climate system. Phil. Trans. R. Soc. A 367, 871–884 (2009)

    Article  ADS  MathSciNet  PubMed  MATH  Google Scholar 

  • Carpenter, S. R. & Brock, W. A. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 308–315 (2006)This paper shows that variance increases in the vicinity of a bifurcation in a lake model.

    Google Scholar 

  • Biggs, R., Carpenter, S. R. & Brock, W. A. Turning back from the brink: detecting an impending regime shift in time to avert it. Proc. Natl Acad. Sci. USA 106, 826–831 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Berglund, N. & Gentz, B. Metastability in simple climate models: pathwise analysis of slowly driven Langevin equations. Stoch. Dyn. 2, 327–356 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Berglund, N. & Gentz, B. Noise-Induced Phenomena in Slow-Fast Dynamical Systems - A Sample-Paths Approach (Springer, 2006)

    MATH  Google Scholar 

  • Guttal, V. & Jayaprakash, C. Changing skewness: an early warning signal of regime shifts in ecosystems. Ecol. Lett. 11, 450–460 (2008)

    Article  PubMed  Google Scholar 

  • Horsthemke, W. & Lefever, R. Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology (Springer, 1984)

    MATH  Google Scholar 

  • Carpenter, S. R. et al. Leading indicators of trophic cascades. Ecol. Lett. 11, 128–138 (2008)

    CAS  PubMed  Google Scholar 

  • Strogatz, S. H. Nonlinear Dynamics and Chaos - With Applications to Physics, Biology, Chemistry and Engineering 1st edn 248–254 (Addison-Wesley, 1994)

    Google Scholar 

  • Chisholm, R. A. & Filotas, E. Critical slowing down as an indicator of transitions in two-species models. J. Theor. Biol. 257, 142–149 (2009)

    Article  MathSciNet  PubMed  MATH  ADS  Google Scholar 

  • Vandermeer, J. & Yodzis, P. Basin boundary collision as a model of discontinuous change in ecosystems. Ecology 80, 1817–1827 (1999)

    Article  Google Scholar 

  • Rinaldi, S. & Scheffer, M. Geometric analysis of ecological models with slow and fast processes. Ecosystems 3, 507–521 (2000)

    Article  Google Scholar 

  • Vandermeer, J., Stone, L. & Blasius, B. Categories of chaos and fractal basin boundaries in forced predator-prey models. Chaos Solitons Fractals 12, 265–276 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Leung, H. K. Bifurcation of synchronization as a nonequilibrium phase transition. Physica A 281, 311–317 (2000)

    Article  ADS  Google Scholar 

  • Scheffer, M., Westley, F. & Brock, W. Slow response of societies to new problems: causes and costs. Ecosystems 6, 493–502 (2003)

    Article  Google Scholar 

  • Holyst, J. A., Kacperski, K. & Schweitzer, F. Social impact models of opinion dynamics. Annu. Rev. Comput. Phys. 9, 253–273 (2002)

    MATH  Google Scholar 

  • Bascompte, J. & Solé, R. V. Habitat fragmentation and extinction thresholds in spatially explicit models. J. Anim. Ecol. 65, 465–473 (1996)

    Article  Google Scholar 

  • Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998)

    Article  ADS  CAS  Google Scholar 

  • Solé, R. V. et al. Phase transitions and complex systems. Complexity 1, 13–26 (1996)

    Article  Google Scholar 

  • Kefi, S. et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449, 213–217 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Turing, A. M. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004)This paper discusses how self-organized vegetation patterns may indicate the vicinity of a catastrophic bifurcation in which all vegetation is lost.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Tredicce, J. R. et al. Critical slowing down at a bifurcation. Am. J. Phys. 72, 799–809 (2004)

    Article  ADS  Google Scholar 

  • Matsumoto, G. & Kunisawa, T. Critical slowing-down near the transition region from the resting to time-ordered states in squid giant axons. J. Phys. Soc. Jpn 44, 1047–1048 (1978)

    Article  ADS  CAS  Google Scholar 

  • Alley, R. B. et al. Abrupt climate change. Science 299, 2005–2010 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Tripati, A., Backman, J., Elderfield, H. & Ferretti, P. Eocene bipolar glaciation associated with global carbon cycle changes. Nature 436, 341–346 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kump, L. R. Foreshadowing the glacial era. Nature 436, 333–334 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Liu, Z. et al. Global cooling during the Eocene-Oligocene climate transition. Science 323, 1187–1190 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)

    Article  ADS  CAS  Google Scholar 

  • Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008)

    Article  ADS  PubMed  CAS  Google Scholar 

  • Rahmstorf, S. Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, 145–149 (1995)

    Article  ADS  CAS  Google Scholar 

  • Bakke, J. et al. Rapid oceanic and atmospheric changes during the Younger Dryas cold period. Nature Geosci. 2, 202–205 (2009)

    Article  ADS  CAS  Google Scholar 

  • Clark, P. U., Pisias, N. G., Stocker, T. F. & Weaver, A. J. The role of the thermohaline circulation in abrupt climate change. Nature 415, 863–869 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Crowley, T. J. & Hyde, W. T. Transient nature of late Pleistocene climate variability. Nature 456, 226–230 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Scheffer, M. & van Nes, E. H. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584, 455–466 (2007)

    Article  CAS  Google Scholar 

  • Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003)

    Article  Google Scholar 

  • Hsieh, C. H. et al. Fishing elevates variability in the abundance of exploited species. Nature 443, 859–862 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Anderson, C. N. K. et al. Why fishing magnifies fluctuations in fish abundance. Nature 452, 835–839 (2008)This paper shows that increased variance in exploited fish stocks may arise from higher growth rates leading to stronger nonlinearity.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Mormann, F., Andrzejak, R. G., Elger, C. E. & Lehnertz, K. Seizure prediction: the long and winding road. Brain 130, 314–333 (2007)

    Article  PubMed  Google Scholar 

  • Elger, C. E. & Lehnertz, K. Seizure prediction by non-linear time series analysis of brain electrical activity. Eur. J. Neurosci. 10, 786–789 (1998)

    Article  CAS  PubMed  Google Scholar 

  • Brock, W., Lakonishok, J. & Lebaron, B. Simple technical trading rules and the stochastic properties of stock returns. J. Finance 47, 1731–1764 (1992)

    Article  Google Scholar 

  • Lo, A. W., Mamaysky, H. & Wang, J. Foundations of technical analysis: computational algorithms, statistical inference, and empirical implementation. J. Finance 55, 1705–1765 (2000)

    Article  Google Scholar 

  • Lebaron, B. The stability of moving average technical trading rules on the Dow Jones Index. Deriv. Use Trad. Regul. 5, 324–338 (2000)

    Google Scholar 

  • Bates, D. S. The crash of 87 - was it expected? The evidence from options markets. J. Finance 46, 1009–1044 (1991)

    Article  Google Scholar 

  • Bates, D. S. Jumps and stochastic volatility: exchange rate processes implicit in deutsche mark options. Rev. Financ. Stud. 9, 69–107 (1996)

    Article  Google Scholar 

  • Hens, T. & Schenk-Hoppe, K. R. Handbook of Financial Markets: Dynamics and Evolution (North-Holland, 2009)

    Google Scholar 

  • Arvedlund, E. Calm before the storm? Low volatility often precedes market downturn. Barron’s (January 28, 2002)

    Google Scholar 

  • Whaley, R. E. Derivatives on market volatility: hedging tools long overdue. J. Deriv. 1, 71–84 (1993)

    Article  Google Scholar 

  • Whaley, R. E. The investor fear gauge. J. Portfol. Manage. 26, 12–17 (2000)

    Article  Google Scholar 

  • Lebaron, B. Some relations between volatility and serial correlations in stock-market returns. J. Bus. 65, 199–219 (1992)

    Article  Google Scholar 

  • Hong, H. & Stein, J. C. Differences of opinion, short-sales constraints, and market crashes. Rev. Financ. Stud. 16, 487–525 (2003)

    Article  Google Scholar 

  • Bence, J. R. Analysis of short-time series - correcting for autocorrelation. Ecology 76, 628–639 (1995)

    Article  Google Scholar 

  • Box, G. E. P., Jenkins, G. M. & Reinsel, G. C. Time Series Analysis: Forecasting and Control (Prentice-Hall, 1994)

    MATH  Google Scholar 

  • Guttal, V. & Jayaprakash, C. Spatial variance and spatial skewness: leading indicators of regime shifts in spatial ecological systems. Theor. Ecol. 11, 450–460 (2008)

    Google Scholar 

  • Van Nes, E. H. & Scheffer, M. Implications of spatial heterogeneity for regime shifts in ecosystems. Ecology 86, 1797–1807 (2005)

    Article  Google Scholar