nature.com

Fitness and its role in evolutionary genetics - Nature Reviews Genetics

  • ️Orr, H. Allen
  • ️Sat Aug 01 2009
  • Brandon, R. N. Adaptation and evolutionary theory. Stud. Hist. Philos. Sci. 9, 181–206 (1978).

    Google Scholar 

  • Brandon, R. N. Adaptation and Environment (Princeton Univ. Press, New Jersey, 1990).

    Google Scholar 

  • Mills, S. & Beatty, J. The propensity interpretation of fitness. Philos. Sci. 46, 263–286 (1979).

    Google Scholar 

  • Sober, E. The Nature of Selection (MIT Press, Massachusetts, 1984).

    Google Scholar 

  • Sober, E. in Thinking About Evolution (eds Singh R. S., Krimbas, C. B., Paul, D. B & Beatty, J.) 309–321 (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  • Barker, J. S. F. in Adaptation and Fitness in Animal Populations (eds van der Werf, J., Graser, H.-U., Frankham, R. & Gondro, C.) 3–14 (Springer, Heidelberg, 2009).

    Google Scholar 

  • Haldane, J. B. S. The Causes of Evolution (Longmans, Green & Co., Ltd, New York, 1932).

    Google Scholar 

  • Dobzhansky, T. Genetics and the Origin of Species 3rd edn (Columbia Univ. Press, New York, 1951).

    Google Scholar 

  • Dobzhansky, T. A review of some fundamental concepts and problems of population genetics. Cold Spring Harb. Symp. Quant. Biol. 20, 1–15 (1955).

    CAS  PubMed  Google Scholar 

  • Gillespie, J. H. Population Genetics: a Concise Guide (Johns Hopkins Univ. Press, Baltimore, 2004). A brief but clear introduction to mathematical population genetics. Little mathematical background is assumed.

    Google Scholar 

  • Crow, J. F. & Kimura, M. An Introduction to Population Genetics Theory (Harper and Row, New York, 1970). The gold standard textbook of classical population genetics, including rigorous treatments of fitness and natural selection. The work is, in places, mathematically demanding.

    Google Scholar 

  • Gillespie, J. Natural selection for variances in offspring number: a new evolutionary principle. Am. Nat. 111, 1010–1014 (1977).

    Google Scholar 

  • Frank, S. A. & Slatkin, M. Evolution in a variable environment. Am. Nat. 136, 244–260 (1990).

    Google Scholar 

  • Orr, H. A. Absolute fitness, relative fitness, and utility. Evolution 61, 2997–3000 (2007).

    PubMed  Google Scholar 

  • Felsenstein, J. Theoretical Evolutionary Genetics 408 [online], (2007).

    Google Scholar 

  • Gillespie, J. H. Natural selection with varying selection coefficients — a haploid model. Genet. Res. 21, 115–120 (1973).

    Google Scholar 

  • Gillespie, J. H. The Causes of Molecular Evolution (Oxford Univ. Press, Oxford, 1991).

    Google Scholar 

  • Seger, J. & Brockman, H. J. in Oxford Surveys in Evolutionary Biology (eds Harvey, P. H. & Partridge, L.) 182–211 (Oxford Univ. Press, Oxford, 1987).

    Google Scholar 

  • Bulmer, M. Theoretical Evolutionary Ecology 352 (Sinauer, Sunderland, Massachusetts, 1994).

    Google Scholar 

  • Stearns, S. C. Daniel Bernoulli (1738): evolution and economics under risk. J. Biosci. 25, 221–228 (2000).

    CAS  PubMed  Google Scholar 

  • Levene, H. Genetic equilibrium when more than one ecological niche is available. Am. Nat. 87, 331–333 (1953).

    Google Scholar 

  • Dempster, E. R. Maintenance of genetic heterogeneity. Cold Spring Harb . Symp . Quant . Biol. 20, 25–32 (1955).

    CAS  PubMed  Google Scholar 

  • Wallace, B. Topics in Population Genetics (Norton, New York, 1968).

    Google Scholar 

  • Robertson, A. A mathematical model of the culling process in dairy cattle. Anim. Prod. 8, 95–108 (1966). A little-read but enormously important paper in the history of quantitative genetics. The paper introduces the secondary theorem of natural selection.

    Google Scholar 

  • Price, G. R. Selection and covariance. Nature 227, 520–521 (1970).

    CAS  PubMed  Google Scholar 

  • Falconer, D. S. Introduction to Quantitative Genetics 2nd edn (Longman, UK, 1981).

    Google Scholar 

  • Price, G. R. Extension of covariance selection mathematics. Ann. Hum. Genet. 35, 485–490 (1972).

    CAS  PubMed  Google Scholar 

  • Crow, J. F. & Nagylaki, T. The rate of change of a character correlated with fitness. Am. Nat. 110, 207–213 (1976).

    PubMed  Google Scholar 

  • Fisher, R. A. The Genetical Theory of Natural Selection (Oxford Univ. Press, Oxford, 1930).

    Google Scholar 

  • Robertson, A. Selection in animals: synthesis. Cold Spring Harb. Symp. Quant. Genet. 20, 225–229 (1955).

    CAS  Google Scholar 

  • Robertson, A. in Heritage from Mendel (ed. Brink, A.) 265–280 (Univ. Wisconsin Press, Madison, 1967).

    Google Scholar 

  • Robertson, A. in Population Biology and Evolution (ed. Lewontin, R. C.) 5–16 (Syracuse Univ. Press, New York, 1968).

    Google Scholar 

  • Ewens, W. J. An interpretation and proof of the fundamental theorem of natural selection. Theor. Pop. Biol. 36, 167–180 (1989).

    CAS  Google Scholar 

  • Ewens, W. J. An optimizing principle of natural selection in evolutionary population genetics. Theor. Pop. Biol. 42, 333–346 (1992).

    CAS  Google Scholar 

  • Edwards, A. W. F. The fundamental theorem of natural selection. Biol. Rev. 69, 443–474 (1994).

    CAS  PubMed  Google Scholar 

  • Lessard, S., Fisher's fundamental theorem of natural selection revisited. Theor. Pop. Biol. 52, 119–136 (1997).

    CAS  Google Scholar 

  • Crow, J. F. Here's to Fisher, additive genetic variance, and the fundamental theorem of natural selection. Evolution 56, 1313–1316 (2002).

    PubMed  Google Scholar 

  • Kauffman, S. A. The Origins of Order 709 (Oxford Univ. Press, New York, 1993).

    Google Scholar 

  • Orr, H. A. Genetic theories of adaptation: a brief history. Nature Rev. Genet. 6, 119–127 (2005).

    CAS  PubMed  Google Scholar 

  • Joyce, P. et al. A general extreme value theory model for the adaptation of DNA sequences under strong selection and weak mutation. Genetics 180, 1627–1643 (2008).

    PubMed  PubMed Central  Google Scholar 

  • Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1931).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proc. 6th Int. Cong. Genet. 1, 356–366 (1932). Wright's famous description of adaptive (or fitness) landscapes.

    Google Scholar 

  • Wright, S. Character change, speciation, and the higher taxa. Evolution 36, 427–443 (1982).

    PubMed  Google Scholar 

  • Coyne, J. A., Barton, N. H. & Turelli, M. A critique of Sewall Wright's shifting balance theory of evolution. Evolution 51, 643–671 (1997).

    PubMed  Google Scholar 

  • Maynard Smith, J. in The Scientist Speculates: an Anthology of Partly-Baked Ideas (ed. Good, I. J.) 252–256 (Basic Books, Inc., New York, 1962).

    Google Scholar 

  • Maynard Smith, J. Natural selection and the concept of a protein space. Nature 225, 563–564 (1970). A brilliant description of the problem of increasing fitness by evolution through a discrete sequence space.

    Google Scholar 

  • Gillespie, J. H. A simple stochastic gene substitution model. Theor. Pop. Biol. 23, 202–215 (1983).

    CAS  Google Scholar 

  • Gillespie, J. Molecular evolution over the mutational landscape. Evolution 38, 1116–1129 (1984).

    CAS  PubMed  Google Scholar 

  • Kauffman, S. & Levin, S. Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128, 11–45 (1987).

    CAS  PubMed  Google Scholar 

  • Kauffman, S. A., Weinberger, E. D. & Perelson, A. S. in Theoretical Immunology: Part One (ed. A. S. Perelson) 349–382 (Addison-Wesley, New York, 1988).

    Google Scholar 

  • Macken, C. A. & Perelson, A. S. Protein evolution on rugged landscapes. Proc. Natl Acad. Sci. USA 86, 6191–6195 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macken, C. A., Hagan, P. S. & Perelson, A. S. Evolutionary walks on rugged landscapes. SIAM J. Appl. Math. 51, 799–827 (1991).

    Google Scholar 

  • Perelson, A. S. & Macken, C. A. Protein evolution on partially correlated landscapes. Proc. Natl Acad. Sci. USA 92, 9657–9661 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orr, H. A. The population genetics of adaptation: the adaptation of DNA sequences. Evolution 56, 1317–1330 (2002).

    CAS  PubMed  Google Scholar 

  • Orr, H. A. The distribution of fitness effects among beneficial mutations. Genetics 163, 1519–1526 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orr, H. A. The probability of parallel adaptation. Evolution 59, 216–220 (2004).

    Google Scholar 

  • Orr, H. A. Theories of adaptation: what they do and don't say. Genetica 123, 3–13 (2005).

    PubMed  Google Scholar 

  • Lewontin, R. C., Moore, J. A., Provine, W. B. & Wallace, B. (eds). Dobzhansky's Genetics of Natural Populations I-XLIII (Columbia Univ. Press, New York, 1981). An important compilation of Dobzhansky's experimental studies of fitness in natural populations of D. pseudoobscura.

  • Lewontin, R. C. The Genetic Basis of Evolutionary Change 346 (Columbia Univ. Press, New York, 1974).

    Google Scholar 

  • Hedrick, P. W. Genetics of Populations Ch. 5 (Science Books International, Boston, 1983).

    Google Scholar 

  • Hedrick, P. W. Murray, E. in Genetics and Biology of Fitness (eds Ashburner, M., Carson, H. L. & Thompson, J. N.) 61–104 (Academic, New York, 1983).

    Google Scholar 

  • Christiansen, F. B. & Frydenberg, O. Selection component analysis of natural polymorphisms using population samples including mother-offspring combinations. Theor. Pop. Biol. 4, 425–445 (1973).

    CAS  Google Scholar 

  • Bundgaard, J. & Christiansen, F. B. Dynamics of polymorphisms: I. Selection components of Drosophila melanogaster. Genetics 71, 439–460 (1972).

    CAS  PubMed  Google Scholar 

  • Lewontin, R. C. & Cockerham, C. C. The goodness-of-fit test for detecting natural selection in randomly mating populations. Evolution 13, 561–564 (1959).

    Google Scholar 

  • Prout, T. The estimation of fitnesses from genotypic frequencies. Evolution 19, 546–551 (1965).

    Google Scholar 

  • Prout, T. The estimation of fitnesses from population data. Genetics 63, 949–967 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Denniston, C. & Crow, J. F. Alternative fitness models with the same allele frequency dynamics. Genetics 125, 201–205 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kreitman, M. in Evolution at the Molecular Level (eds Selander, R. K., Clark, A. G. & Whittam, T. S.) 204–221 (Sinauer Associates, Inc., Sunderland, Massachusetts, 1991).

    Google Scholar 

  • Kreitman, M. The neutral theory is dead. Long live the neutral theory. BioEssays 18, 678–683 (1996).

    CAS  PubMed  Google Scholar 

  • Otto, S. P. Detecting the form of selection from DNA sequence data. Trends Genet. 16, 526–529 (2000).

    CAS  PubMed  Google Scholar 

  • Eyre-Walker, A. The genomic rate of adaptive evolution. Trends Ecol. Evol. 21, 569–575 (2006). A review of Eyre-Walker's approach to using DNA sequence data to estimate the proportion of amino acid substitutions driven by natural selection.

    PubMed  Google Scholar 

  • Hahn, M. W. Toward a selection theory of molecular evolution. Evolution 62, 255–265 (2008).

    CAS  PubMed  Google Scholar 

  • McDonald, J. H. & Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654 (1991). The paper that introduced the most widely used statistical test of neutrality versus selection at the level of DNA sequences.

    CAS  PubMed  Google Scholar 

  • Begun, D. J. et al. Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLoS Biol. 5, e310 (2007). A genome-wide analysis of molecular evolution in D. simulans . The paper provides evidence for frequent positive natural selection.

    PubMed  PubMed Central  Google Scholar 

  • Smith, N. G. C. & Eyre-Walker, A. Adaptive protein evolution in Drosophila. Nature 415, 1022–1024 (2002).

    CAS  PubMed  Google Scholar 

  • Andolfatto, P. Adaptive evolution of non-coding DNA in Drosophila. Nature 437, 1149–1152 (2005).

    CAS  PubMed  Google Scholar 

  • Kim, Y. & Stephan, W. Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics 160, 765–777 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. I. et al. The effects of artificial selection on the maize genome. Science 308, 1310–1314 (2005).

    CAS  PubMed  Google Scholar 

  • Lenski, R. E. & Travisano, M. Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc. Natl Acad. Sci. USA 91, 6808–6814 (1994). A classic account of a real-time experimental evolution study in Escherichia coli.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sniegowski, P. D., Gerrish, P. J. & Lenski, R. E. Evolutionof high mutation rates in experimental populations of E. coli. Nature 387, 703–705 (1997).

    CAS  PubMed  Google Scholar 

  • Bull, J., Badgett, M. & Wichman, H. Big-benefit mutations in a bacteriophage inhibited with heat. Mol. Biol. Evol. 17, 942–950 (2000).

    CAS  PubMed  Google Scholar 

  • Holder, K. & Bull, J. Profiles of adaptation in two similar viruses. Genetics 159, 1393–1404 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Travisano, M. & Lenski, R. E. Long-term experimental evolution in Escherichia coli. IV. Targets of selection and the specificity of adaptation. Genetics 143, 15–26 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elena, S. F. et al. Evolutionary dynamics of fitness recovery from the debilitating effects of Muller's ratchet. Evolution 52, 309–314 (1998).

    PubMed  Google Scholar 

  • Bull, J. J. et al. Exceptional convergent evolution in a virus. Genetics 147, 1497–1507 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wichman, H. A. et al. Different trajectories of parallel evolution during viral adaptation. Science 285, 422–424 (1999).

    CAS  PubMed  Google Scholar 

  • Elena, S. F. & Lenski, R. E. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nature Rev. Genet. 4, 457–469 (2003).

    CAS  PubMed  Google Scholar 

  • Silander, O. K., Tenaillon, O. & Chao, L. Understanding the evolutionary fate of finite populations: the dynamics of mutational effects. PLoS Biol. 5, e94 (2007).

    PubMed  PubMed Central  Google Scholar 

  • Betancourt, A. Genome-wide patterns of substitution in adaptively evolving populations of the RNA bacteriophage MS2. Genetics 181, 1535–1544 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stern, D. L. & Orgogozo, V. The locus of evolution: how predictable is genetic evolution? Evolution 62, 2155–2177 (2008).

    PubMed  PubMed Central  Google Scholar 

  • Hoekstra, H. E. & Coyne, J. A. The locus of evolution: evo–devo and the genetics of adaptation. Evolution 61, 995–1016 (2007).

    PubMed  Google Scholar 

  • Rokyta, D. R. et al. An empirical test of the mutational landscape model of adaptation using a single-stranded DNA virus. Nature Genet. 37, 441–444 (2005).

    CAS  PubMed  Google Scholar 

  • Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates Inc., Sunderland, Massachusetts, 2004).

    Google Scholar