nature.com

Biased gene transfer in microbial evolution - Nature Reviews Microbiology

  • ️Gogarten, J. Peter
  • ️Mon Jun 13 2011
  • Jain, R., Rivera, M. C., Moore, J. E. & Lake, J. A. Horizontal gene transfer accelerates genome innovation and evolution. Mol. Biol. Evol. 20, 1598–1602 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Yap, W. H., Zhang, Z. & Wang, Y. Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J. Bacteriol. 181, 5201–5209 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, C. X., Darling, A. E., Beiko, R. G. & Ragan, M. A. Are protein domains modules of lateral genetic transfer? PLoS ONE 4, e4524 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y. & Zhang, Z. Comparative sequence analyses reveal frequent occurrence of short segments containing an abnormally high number of non-random base variations in bacterial rRNA genes. Microbiology 146, 2845–2854 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Olendzenski, L. et al. Horizontal transfer of archaeal genes into the Deinococcaceae: detection by molecular and computer-based approaches. J. Mol. Evol. 51, 587–599 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Castillo-Ramirez, S., Vazquez-Castellanos, J. F., Gonzalez, V. & Cevallos, M. A. Horizontal gene transfer and diverse functional constrains within a common replication-partitioning system in Alphaproteobacteria: the repABC operon. BMC Genomics 10, 536 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omelchenko, M., Makarova, K., Wolf, Y., Rogozin, I. & Koonin, E. Evolution of mosaic operons by horizontal gene transfer and gene displacement in situ. Genome Biol. 4, R55 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  • Igarashi, N. et al. Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. J. Mol. Evol. 52, 333–341 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Akagi, Y., Akamatsu, H., Otani, H. & Kodama, M. Horizontal chromosome transfer, a mechanism for the evolution and differentiation of a plant-pathogenic fungus. Eukaryot. Cell 8, 1732–1738 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko, S. & Itaya, M. Designed horizontal transfer of stable giant DNA released from Escherichia coli. J. Biochem. 147, 819–822 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Aravind, L., Tatusov, R. L., Wolf, Y. I., Walker, D. R. & Koonin, E. V. Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet. 14, 442–444 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Nelson, K. E. et al. Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399, 323–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Beiko, R. G., Harlow, T. J. & Ragan, M. A. Highways of gene sharing in prokaryotes. Proc. Natl Acad. Sci. USA 102, 14332–14337 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nesbo, C. L. et al. The genome of Thermosipho africanus TCF52B: lateral genetic connections to the Firmicutes and Archaea. J. Bacteriol. 191, 1974–1978 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boussau, B., Gueguen, L. & Gouy, M. Accounting for horizontal gene transfers explains conflicting hypotheses regarding the position of aquificales in the phylogeny of Bacteria. BMC Evol. Biol. 8, 272 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhaxybayeva, O. et al. On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc. Natl Acad. Sci. USA 106, 5865–5870 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, K. T., Piastro, K., Gray, T. A. & Derbyshire, K. M. Mycobacterial biofilms facilitate horizontal DNA transfer between strains of Mycobacterium smegmatis. J. Bacteriol. 192, 5134–5142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chafee, M. E., Funk, D. J., Harrison, R. G. & Bordenstein, S. R. Lateral phage transfer in obligate intracellular bacteria (Wolbachia): verification from natural populations. Mol. Biol. Evol. 27, 501–505 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Saisongkorh, W., Robert, C., La Scola, B., Raoult, D. & Rolain, J. M. Evidence of transfer by conjugation of Type IV secretion system genes between Bartonella species and Rhizobium radiobacter in amoeba. PLoS ONE 5, e12666 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brochier, C., Philippe, H. & Moreira, D. The evolutionary history of ribosomal protein RpS14: horizontal gene transfer at the heart of the ribosome. Trends Genet. 16, 529–533 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Schouls, L. M., Schot, C. S. & Jacobs, J. A. Horizontal transfer of segments of the 16S rRNA genes between species of the Streptococcus anginosus group. J. Bacteriol. 185, 7241–7246 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer, L. M., Koonin, E. V. & Aravind, L. Evolution of bacterial RNA polymerase: implications for large-scale bacterial phylogeny, domain accretion, and horizontal gene transfer. Gene 335, 73–88 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Makarova, K. S., Ponomarev, V. A. & Koonin, E. V. Two C or not two C: recurrent disruption of Zn-ribbons, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins. Genome Biol. 2, RESEARCH 0033 (2001).

    CAS  PubMed  Google Scholar 

  • Boucher, Y., Douady, C. J., Sharma, A. K., Kamekura, M. & Doolittle, W. F. Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J. Bacteriol. 186, 3980–3990 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanhere, A. & Vingron, M. Horizontal gene transfers in prokaryotes show differential preferences for metabolic and translational genes. BMC Evol. Biol. 9, 9 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danchin, E. G. et al. Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc. Natl Acad. Sci. USA 107, 17651–17656 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khomyakova, M., Bukmez, O., Thomas, L. K., Erb, T. J. & Berg, I. A. A methylaspartate cycle in haloarchaea. Science 331, 334–337 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Gogarten, J. P., Doolittle, W. F. & Lawrence, J. G. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 19, 2226–2238 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Woese, C. R., Olsen, G. J., Ibba, M. & Soll, D. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol. Mol. Biol. Rev. 64, 202–236 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Donoghue, P. & Luthey-Schulten, Z. On the evolution of structure in aminoacyl-tRNA synthetases. Microbiol. Mol. Biol. Rev. 67, 550–573 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coscolla, M., Comas, I. & Gonzalez-Candelas, F. Quantifying nonvertical inheritance in the evolution of Legionella pneumophila. Mol. Biol. Evol. 28, 985–1001 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Hendrickson, H. & Lawrence, J. G. Selection for chromosome architecture in bacteria. J. Mol. Evol. 62, 615–629 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Olendzenski, L., Zhaxybayeva, O. & Gogarten, J. P. in Horizontal Gene Transfer (eds Syvanen, M. & Kado, C. I.) 427–435 (Academic, New York, 2002).

    Book  Google Scholar 

  • Krupovic, M., Gribaldo, S., Bamford, D. H. & Forterre, P. The evolutionary history of archaeal MCM helicases: a case study of vertical evolution combined with hitchhiking of mobile genetic elements. Mol. Biol. Evol. 27, 2716–2732 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Thomas, C. M. & Nielsen, K. M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Rev. Microbiol. 3, 711–721 (2005).

    Article  CAS  Google Scholar 

  • McDaniel, L. D. et al. High frequency of horizontal gene transfer in the oceans. Science 330, 50 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Popa, O., Hazkani-Covo, E., Landan, G., Martin, W. & Dagan, T. Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes. Genome Res. 21, 599–609 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooper, S., Mavromatis, K. & Kyrpides, N. Microbial co-habitation and lateral gene transfer: what transposases can tell us. Genome Biol. 10, R45 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. Mobile genetic elements: the agents of open source evolution. Nature Rev. Microbiol. 3, 722–732 (2005).

    Article  CAS  Google Scholar 

  • Sobecky, P. A. & Hazen, T. H. Horizontal gene transfer and mobile genetic elements in marine systems. Methods Mol. Biol. 532, 435–453 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Malachowa, N. & DeLeo, F. R. Mobile genetic elements of Staphylococcus aureus. Cell. Mol. Life Sci. 67, 3057–3071 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siefert, J. L. Defining the mobilome. Methods Mol. Biol. 532, 13–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Wozniak, R. A. & Waldor, M. K. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nature Rev. Microbiol. 8, 552–563 (2010).

    Article  CAS  Google Scholar 

  • Tettelin, H. et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc. Natl Acad. Sci. USA 102, 13950–13955 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapierre, P. & Gogarten, J. P. Estimating the size of the bacterial pan-genome. Trends Genet. 25, 107–110 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Puigbo, P., Wolf, Y. I. & Koonin, E. V. The tree and net components of prokaryote evolution. Genome Biol. Evol. 2, 745–756 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence, J. G. & Retchless, A. C. The interplay of homologous recombination and horizontal gene transfer in bacterial speciation. Methods Mol. Biol. 532, 29–53 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Andam, C. P., Williams, D. & Gogarten, J. P. Biased gene transfer mimics patterns created through shared ancestry. Proc. Natl Acad. Sci. USA 107, 10679–10684 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, V. & Greub, G. Amoeba/amoebal symbiont genetic transfers: lessons from giant virus neighbours. Intervirology 53, 254–267 (2010).

    Article  PubMed  Google Scholar 

  • Huang, J. & Gogarten, J. P. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol. 8, R99 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, W., Brinkmann, H., Savonna, C. & Cerff, R. Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc. Natl Acad. Sci. USA 90, 8692–8696 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fournier, G. P. & Gogarten, J. P. Evolution of acetoclastic methanogenesis in Methanosarcina via horizontal gene transfer from cellulolytic Clostridia. J. Bacteriol. 190, 1124–1127 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Andam, C. P., Williams, D. & Gogarten, J. P. Natural taxonomy in light of horizontal gene transfer. Biol. Philos. 25, 589–602 (2010).

    Article  Google Scholar 

  • Omelchenko, M. V., Galperin, M. Y., Wolf, Y. I. & Koonin, E. V. Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution. Biol. Direct 5, 31 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farahi, K., Pusch, G. D., Overbeek, R. & Whitman, W. B. Detection of lateral gene transfer events in the prokaryotic tRNA synthetases by the ratios of evolutionary distances method. J. Mol. Evol. 58, 615–631 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Stern, A. et al. An evolutionary analysis of lateral gene transfer in thymidylate synthase enzymes. Syst. Biol. 59, 212–225 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhaxybayeva, O. Detection and quantitative assessment of horizontal gene transfer. Methods Mol. Biol. 532, 195–213 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Clark, R. & Neidthardt, F. Roles of the two lysyl-tRNA synthetases of Escherichia coli: analysis of nucleotide sequences and mutant behavior. J. Bacteriol. 172, 3237–3243 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putzer, H., Brakhage, A. A. & Grunberg-Manago, M. Independent genes for two threonyl-tRNA synthetases in Bacillus subtilis. J. Bacteriol. 172, 4593–4602 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagisawa, T. & Kawakami, M. How does Pseudomonas fluorescens avoid suicide from its antibiotic pseudomonic acid? Evidence for two evolutionarily distinct isoleucyl-tRNA synthetases conferring self-defense. J. Biol. Chem. 278, 25887–25894 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Thomas, C. M., Hothersall, J., Willis, C. L. & Simpson, T. J. Resistance to and synthesis of the antibiotic mupirocin. Nature Rev. Microbiol. 8, 281–289 (2010).

    Article  CAS  Google Scholar 

  • Gentry, D. R. et al. Variable sensitivity to bacterial methionyl-tRNA synthetase inhibitors reveals subpopulations of Streptococcus pneumoniae with two distinct methionyl-tRNA synthetase genes. Antimicrob. Agents Chemother. 47, 1784–1789 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, J. R. et al. Horizontal transfer of drug-resistant aminoacyl-transfer-RNA synthetases of anthrax and Gram-positive pathogens. EMBO Rep. 4, 692–698 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vecchione, J. J. & Sello, J. K. A novel tryptophanyl-tRNA synthetase gene confers high-level resistance to indolmycin. Antimicrob. Agents Chemother. 53, 3972–3980 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vecchione, J. J. & Sello, J. K. Regulation of an auxiliary, antibiotic-resistant tryptophanyl-tRNA synthetase gene via ribosome-mediated transcriptional attenuation. J. Bacteriol. 192, 3565–3573 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondrashov, F. A., Rogozin, I. B., Wolf, Y. I. & Koonin, E. V. Selection in the evolution of gene duplications. Genome Biol. 3, RESEARCH0008 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  • Couturier, E. & Rocha, E. P. Replication-associated gene dosage effects shape the genomes of fast-growing bacteria but only for transcription and translation genes. Mol. Microbiol. 59, 1506–1518 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Zeng, Y., Roy, H., Patil, P. B., Ibba, M. & Chen, S. Characterization of two seryl-tRNA synthetases in albomycin-producing Streptomyces sp. strain ATCC 700974. Antimicrob. Agents Chemother. 53, 4619–4627 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doolittle, W. F. et al. How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Phil. Trans. R. Soc. B 358, 39–58 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gogarten, J. P. & Townsend, J. P. Horizontal gene transfer, genome innovation and evolution. Nature Rev. Microbiol. 3, 679–687 (2005).

    Article  CAS  Google Scholar 

  • Fitch, W. M. & Upper, K. The phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code. Cold Spring Harb. Symp. Quant. Biol. 52, 759–767 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Kandler, O. in Early Life on Earth, Nobel Symposium 84 (ed. Bengston, S.) 152–160 (Columbia Univ. Press, New York,1994).

    Google Scholar 

  • Woese, C. The universal ancestor. Proc. Natl Acad. Sci. USA 95, 6854–6859 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhaxybayeva, O. & Gogarten, J. P. Cladogenesis, coalescence and the evolution of the three domains of life. Trends Genet. 20, 182–187 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Eriani, G., Delarue, M., Poch, O., Gangloff, J. & Moras, D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347, 203–206 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Fournier, G. P., Huang, J. & Gogarten, J. P. Horizontal gene transfer from extinct and extant lineages: biological innovation and the coral of life. Phil. Trans. R. Soc. B 364, 2229–2239 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, H. S., Vothknecht, U. C., Hedderich, R., Celic, I. & Soll, D. Sequence divergence of seryl-tRNA synthetases in archaea. J. Bacteriol. 180, 6446–6449 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korencic, D., Polycarpo, C., Weygand-Durasevic, I. & Soll, D. Differential modes of transfer RNASer recognition in Methanosarcina barkeri. J. Biol. Chem. 279, 48780–48786 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Bilokapic, S., Korencic, D., Soll, D. & Weygand-Durasevic, I. The unusual methanogenic seryl-tRNA synthetase recognizes tRNASer species from all three kingdoms of life. Eur. J. Biochem. 271, 694–702 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Jaric, J. et al. Identification of amino acids in the N-terminal domain of atypical methanogenic-type seryl-tRNA synthetase critical for tRNA recognition. J. Biol. Chem. 284, 30643–30651 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibba, M., Curnow, A. W. & Soll, D. Aminoacyl-tRNA synthesis: divergent routes to a common goal. Trends Biochem. Sci. 22, 39–42 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Gogarten, J., Fournier, G. & Zhaxybayeva, O. Gene transfer and the reconstruction of life's early history from genomic data. Space Sci. Rev. 135, 115–131 (2008).

    Article  CAS  Google Scholar 

  • Gevers, D. et al. Stepping stones towards a new prokaryotic taxonomy. Phil. Trans. R. Soc. B 361, 1911–1916 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bapteste, E. et al. Prokaryotic evolution and the tree of life are two different things. Biol. Direct 4, 34 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, J. & Gogarten, J. P. Ancient horizontal gene transfer can benefit phylogenetic reconstruction. Trends Genet. 22, 361–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Huang, J., Xu, Y. & Gogarten, J. P. The presence of a haloarchaeal type tyrosyl-tRNA synthetase marks the opisthokonts as monophyletic. Mol. Biol. Evol. 22, 2142–2146 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Wolf, Y. I., Rogozin, I. B., Grishin, N. V. & Koonin, E. V. Genome trees and the tree of life. Trends Genet. 18, 472–479 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Korbel, J. O., Snel, B., Huynen, M. A. & Bork, P. SHOT: a web server for the construction of genome phylogenies. Trends Genet. 18, 158–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brochier, C., Forterre, P. & Gribaldo, S. Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox. Genome Biol. 5, R17 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mongodin, E. F. et al. The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc. Natl Acad. Sci. USA 102, 18147–18152 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degnan, J. H. & Rosenberg, N. A. Discordance of species trees with their most likely gene trees. PLoS Genet. 2, e68 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbeck, J. T., Degnan, P. H. & Wernegreen, J. J. Nonhomogeneous model of sequence evolution indicates independent origins of primary endosymbionts within the Enterobacteriales (γ-Proteobacteria). Mol. Biol. Evol. 22, 520–532 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Zhaxybayeva, O., Lapierre, P. & Gogarten, J. P. Genome mosaicism and organismal lineages. Trends Genet. 20, 254–260 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Zhaxybayeva, O., Gogarten, J. P., Charlebois, R. L., Doolittle, W. F. & Papke, R. T. Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res. 16, 1099–1108 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilario, E. & Gogarten, J. P. Horizontal transfer of ATPase genes — the tree of life becomes a net of life. Biosystems 31, 111–119 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Horn, M. et al. Illuminating the evolutionary history of chlamydiae. Science 304, 728–730 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Becker, B., Hoef-Emden, K. & Melkonian, M. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes. BMC Evol. Biol. 8, 203 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moustafa, A., Reyes-Prieto, A. & Bhattacharya, D. Chlamydiae has contributed at least 55 genes to Plantae with predominantly plastid functions. PLoS ONE 3, e2205 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Koning, A. P., Brinkman, F. S., Jones, S. J. & Keeling, P. J. Lateral gene transfer and metabolic adaptation in the human parasite Trichomonas vaginalis. Mol. Biol. Evol. 17, 1769–1773 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).

    Article  PubMed  Google Scholar 

  • Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Lanave, C., Preparata, G., Saccone, C. & Serio, G. A new method for calculating evolutionary substitution rates. J. Mol. Evol. 20, 86–93 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Abascal, F., Zardoya, R. & Posada, D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104–2105 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Posada, D. & Crandall, K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Corvaglia, A. R. et al. A type III-like restriction endonuclease functions as a major barrier to horizontal gene transfer in clinical Staphylococcus aureus strains. Proc Natl Acad. Sci. USA 107, 11954–11958 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson, T. et al. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer. BMC Biol. 7, 78 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar