nature.com

Possible climate transitions from breakup of stratocumulus decks under greenhouse warming - Nature Geoscience

  • ️Pressel, Kyle G.
  • ️Mon Feb 25 2019

References

  1. Wood, R. Stratocumulus clouds. Mon. Weather Rev. 140, 2373–2423 (2012).

    Article  Google Scholar 

  2. Bretherton, C. S. & Wyant, M. C. Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci. 54, 148–167 (1997).

    Article  Google Scholar 

  3. Stevens, B. et al. On entrainment rates in nocturnal marine stratocumulus. Q. J. R. Meteorol. Soc. 129, 3469–3493 (2003).

    Article  Google Scholar 

  4. Stevens, B. et al. Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Weather Rev. 133, 1443–1462 (2005).

    Article  Google Scholar 

  5. Stevens, B. et al. On the structure of the lower troposphere in the summertime stratocumulus regime of the northeast Pacific. Mon. Weather Rev. 135, 985–1005 (2007).

    Article  Google Scholar 

  6. Mellado, J. P. Cloud-top entrainment in stratocumulus clouds. Annu. Rev. Fluid. Mech. 49, 145–169 (2016).

    Article  Google Scholar 

  7. Schneider, T. et al. Climate goals and computing the future of clouds. Nat. Clim. Change 7, 3–5 (2017).

    Article  Google Scholar 

  8. Nam, C., Bony, S., Dufresne, J.-L. & Chepfer, H. The ‘too few, too bright’ tropical low-cloud problem in CMIP5 models. Geophys. Res. Lett. 39, L21801 (2012).

    Article  Google Scholar 

  9. Lin, J.-L., Qian, T. & Shinoda, T. Stratocumulus clouds in Southeastern Pacific simulated by eight CMIP5–CFMIP global climate models. J. Clim. 27, 3000–3022 (2014).

    Article  Google Scholar 

  10. Boucher, O. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 7 (IPCC, Cambridge Univ. Press, 2013).

  11. Eastman, R., Warren, S. G. & Hahn, C. J. Variations in cloud cover and cloud types over the ocean from surface observations, 1954–2008. J. Clim. 24, 5914–5934 (2011).

    Article  Google Scholar 

  12. Vial, J., Dufresne, J.-L. & Bony, S. On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim. Dyn. 41, 3339–3362 (2013).

    Article  Google Scholar 

  13. Webb, M. J., Lambert, F. H. & Gregory, J. M. Origins of differences in climate sensitivity, forcing and feedback in climate models. Clim. Dyn. 40, 677–707 (2013).

    Article  Google Scholar 

  14. Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016).

    Article  Google Scholar 

  15. Blossey, P. N. et al. Marine low cloud sensitivity to an idealized climate change: the CGILS LES intercomparison. J. Adv. Model. Earth Syst. 5, 234–258 (2013).

    Article  Google Scholar 

  16. Zhang, M. et al. CGILS: results from the first phase of an international project to understand the physical mechanisms of low cloud feedbacks in general circulation models. J. Adv. Model. Earth Syst. 5, 826–842 (2013).

    Article  Google Scholar 

  17. Bretherton, C. S., Blossey, P. N. & Jones, C. R. Mechanisms of marine low cloud sensitivity to idealized climate perturbations: a single-LES exploration extending the CGILS cases. J. Adv. Model. Earth Syst. 5, 316–337 (2013).

    Article  Google Scholar 

  18. Bretherton, C. S. & Blossey, P. N. Low cloud reduction in a greenhouse-warmed climate: results from Lagrangian LES of a subtropical marine cloudiness transition. J. Adv. Model. Earth Syst. 6, 91–114 (2014).

    Article  Google Scholar 

  19. Bretherton, C. S. Insights into low-latitude cloud feedbacks from high-resolution models. Phil. Trans. R. Soc. Lond. A 373, 20140415 (2015).

    Article  Google Scholar 

  20. Pressel, K. G., Kaul, C. M., Schneider, T., Tan, Z. & Mishra, S. Large-eddy simulation in an anelastic framework with closed water and entropy balances. J. Adv. Model. Earth Syst. 7, 1425–1456 (2015).

    Article  Google Scholar 

  21. Pressel, K. G., Mishra, S., Schneider, T., Kaul, C. M. & Tan, Z. Numerics and subgrid-scale modeling in large eddy simulations of stratocumulus clouds. J. Adv. Model. Earth Syst. 9, 1342–1365 (2017).

    Article  Google Scholar 

  22. Klein, S. A. & Hartmann, D. L. The seasonal cycle of low stratiform clouds. J. Clim. 6, 1587–1606 (1993).

    Article  Google Scholar 

  23. Tan, Z., Schneider, T., Teixeira, J. & Pressel, K. G. Large-eddy simulation of subtropical cloud-topped boundary layers: 1. A forcing framework with closed surface energy balance. J. Adv. Model. Earth Syst. 8, 1565–1585 (2016).

    Article  Google Scholar 

  24. Tan, Z., Schneider, T., Teixeira, J. & Pressel, K. G. Large-eddy simulation of subtropical cloud-topped boundary layers: 2. Cloud response to climate change. J. Adv. Model. Earth Syst. 9, 19–38 (2017).

    Article  Google Scholar 

  25. Pierrehumbert, R. T. Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci. 52, 1784–1806 (1995).

    Article  Google Scholar 

  26. Sobel, A. H., Nilsson, J. & Polvani, L. M. The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci. 58, 3650–3665 (2001).

    Article  Google Scholar 

  27. Flato, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 741–853 (IPCC, Cambridge Univ. Press, 2013).

  28. Loeb, N. G. et al. Clouds and the earth’s radiant energy system (CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J. Clim. 31, 895–918 (2018).

    Article  Google Scholar 

  29. Christensen, M. W., Carrio, G. G., Stephens, G. L. & Cotton, W. R. Radiative impacts of free-tropospheric clouds on the properties of marine stratocumulus. J. Atmos. Sci. 70, 3102–3118 (2013).

    Article  Google Scholar 

  30. Randall, D. A. & Suarez, M. J. On the dynamics of stratocumulus formation and dissipation. J. Atmos. Sci. 41, 3052–3057 (1984).

    Article  Google Scholar 

  31. Bretherton, C. S., Uchida, J. & Blossey, P. N. Slow manifolds and multiple equilibria in stratocumulus-capped boundary layers. J. Adv. Model. Earth Syst. 2, 14 (2010).

    Article  Google Scholar 

  32. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  33. Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007).

    Article  Google Scholar 

  34. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    Article  Google Scholar 

  35. Huber, M. & Caballero, R. The early Eocene equable climate problem revisited. Clim. Past 7, 603–633 (2011).

    Article  Google Scholar 

  36. Caballero, R. & Huber, M. State-dependent climate sensitivity in past warm climates and its implications for future climate projections. Proc. Natl Acad. Sci. USA 110, 14162–14167 (2013).

    Article  Google Scholar 

  37. Kopp, R. E. et al. in Climate Science Special Report: Fourth National Climate Assessment Vol. I (eds Wuebbles, D. J. et al.) 411–429 (US Global Change Research Program, 2017).

  38. Cramwinckel, M. J. et al. Synchronous tropical and deep-ocean temperature evolution in the Eocene. Nature 559, 382–386 (2018).

    Article  Google Scholar 

  39. Anagnostou, E. et al. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 533, 380–384 (2016).

    Article  Google Scholar 

  40. Liu, Z. et al. Global cooling during the Eocene–Oligocene climate transition. Science 323, 1187–1190 (2009).

    Article  Google Scholar 

  41. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).

    Article  Google Scholar 

  42. Jiang, G.-S. & Shu, C.-W. Efficient implementation of weighted ENO schemes. J. Comp. Phys. 126, 202–228 (1996).

    Article  Google Scholar 

  43. Stevens, B. et al. Dynamics and chemistry of marine stratocumulus–DYCOMS-II. Bull. Am. Meteorol. Soc. 84, 579–593 (2003).

    Article  Google Scholar 

  44. Matheou, G. Turbulence structure in a stratocumulus cloud. Atmosphere 9, 392 (2018).

    Article  Google Scholar 

  45. Mellado, J. P., Bretherton, C. S., Stevens, B. & Wyant, M. C. DNS and LES for simulating stratocumulus: better together. J. Adv. Model. Earth Syst. 10, 1421–1438 (2018).

    Article  Google Scholar 

  46. Shu, C.-W. & Osher, S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comp. Phys. 77, 439–471 (1988).

    Article  Google Scholar 

  47. Jones, C. R., Bretherton, C. S. & Pritchard, M. S. Mean-state acceleration of cloud-resolving models and large eddy simulations. J. Adv. Model. Earth Syst. 7, 1643–1660 (2015).

    Article  Google Scholar 

  48. Iacono, M. J. et al. Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J. Geophys. Res. 113, D13103 (2008).

    Article  Google Scholar 

  49. Byun, D. W. On the analytical solutions of flux-profile relationships for the atmospheric surface layer. J. Appl. Meteorol. 29, 652–657 (1990).

    Article  Google Scholar 

  50. Manabe, S. & Wetherald, R. T. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24, 241–259 (1967).

    Article  Google Scholar 

  51. Akmaev, R. A. A direct algorithm for convective adjustment of the vertical temperature profile for an arbitrary critical lapse rate. Mon. Weather Rev. 119, 2499–2504 (1991).

    Article  Google Scholar 

  52. Held, I. M. & Soden, B. J. Water vapor feedback and global warming. Annu. Rev. Energy Environ. 25, 441–475 (2000).

    Article  Google Scholar 

  53. O’Gorman, P. A. & Schneider, T. The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Clim. 21, 3815–3832 (2008).

    Article  Google Scholar 

  54. Schneider, T., O’Gorman, P. A. & Levine, X. J. Water vapor and the dynamics of climate changes. Rev. Geophys. 48, RG3001 (2010).

    Article  Google Scholar 

  55. Sherwood, S. C. et al. Relative humidity changes in a warmer climate. J. Geophys. Res. 115, D09104 (2010).

    Article  Google Scholar 

  56. Betts, A. K. & Ridgway, W. L. Climatic equilibrium of the atmospheric convective boundary layer over a tropical ocean. J. Atmos. Sci. 46, 2621–2641 (1989).

    Article  Google Scholar 

  57. Trenberth, K. E. & Stepaniak, D. P. Seamless poleward atmospheric energy transports and implications for the Hadley circulation. J. Clim. 16, 3706–3722 (2003).

    Article  Google Scholar 

  58. Kaul, C. M., Teixeira, J. & Suzuki, K. Sensitivities in large-eddy simulations of mixed-phase Arctic stratocumulus clouds using a simple microphysics approach. Mon. Weather Rev. 143, 4393–4421 (2015).

    Article  Google Scholar 

  59. Straka, J. M. Cloud and Precipitation Microphysics: Principles and Parameterizations Ch. 4 (Cambridge Univ. Press, Cambridge, 2009).

Download references