nature.com

Genetic control of typical and atypical sex development - Nature Reviews Urology

  • ️Harley, Vincent R.
  • ️Wed Apr 05 2023
  • Duranteau, L. et al. Participant- and clinician-reported long-term outcomes after surgery in individuals with complete androgen insensitivity syndrome. J. Pediatr. Adolesc. Gynecol. 34, 168–175 (2021).

    Article  PubMed  Google Scholar 

  • Hughes, I. A., Houk, C., Ahmed, S. F. & Lee, P. A., Lawson Wilkins Pediatric Endocrine Society/European Society for Paediatric Endocrinology Consensus Group. Consensus statement on management of intersex disorders. J. Pediatr. Urol. 2, 148–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Lee, P. A. et al. Consensus statement on management of intersex disorders. International Consensus Conference on Intersex. Pediatrics 118, e488–e500 (2006).

    Article  PubMed  Google Scholar 

  • Ahmed, S. F. et al. Society for endocrinology UK Guidance on the initial evaluation of a suspected difference or disorder of sex development (revised 2021). Clin. Endocrinol. 95, 818–840 (2021).

    Article  Google Scholar 

  • Audi, L. et al. Genetics in endocrinology: approaches to molecular genetic diagnosis in the management of differences/disorders of sex development (DSD): position paper of EU COST Action BM 1303 ‘DSDnet’. Eur. J. Endocrinol. 179, R197–R206 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camats, N., Fernandez-Cancio, M., Audi, L., Schaller, A. & Fluck, C. E. Broad phenotypes in heterozygous NR5A1 46,XY patients with a disorder of sex development: an oligogenic origin? Eur. J. Hum. Genet. 26, 1329–1338 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leon, N. Y., Reyes, A. P. & Harley, V. R. A clinical algorithm to diagnose differences of sex development. Lancet Diabetes Endocrinol. 7, 560–574 (2019).

    Article  PubMed  Google Scholar 

  • Kavanaugh, G. L. et al. “Good practices” in pediatric clinical care for disorders/differences of sex development. Endocrine 73, 723–733 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevant, I. & Nef, S. Genetic control of gonadal sex determination and development. Trends Genet. 35, 346–358 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Lecluze, E. et al. Dynamics of the transcriptional landscape during human fetal testis and ovary development. Hum. Reprod. 35, 1099–1119 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm, D. & Englert, C. The Wilms tumor suppressor WT1 regulates early gonad development by activation of Sf1. Genes Dev. 16, 1839–1851 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swain, A. & Lovell-Badge, R. Mammalian sex determination: a molecular drama. Genes Dev. 13, 755–767 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Bunce, C., McKey, J. & Capel, B. Concerted morphogenesis of genital ridges and nephric ducts in the mouse captured through whole-embryo imaging. Development https://doi.org/10.1242/dev.199208 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Albrecht, K. H. & Eicher, E. M. Evidence that Sry is expressed in Pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev. Biol. 240, 92–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Hanley, N. A. et al. SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech. Dev. 91, 403–407 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Alonso, L. et al. Single-cell roadmap of human gonadal development. Nature 607, 540–547 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Y.-C., Okumura, L. M. & Page, D. C. Gata4 is required for formation of the genital ridge in mice. PLoS Genet. 9, e1003629 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson, B. E. & Lehmann, R. Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat. Rev. Mol. Cell Biol. 11, 37–49 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto, N., Yoshida, M., Kuratani, S., Matsuo, I. & Aizawa, S. Defects of urogenital development in mice lacking Emx2. Development 124, 1653–1664 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Kusaka, M. et al. Abnormal epithelial cell polarity and ectopic epidermal growth factor receptor (EGFR) expression induced in Emx2 KO embryonic gonads. Endocrinology 151, 5893–5904 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Jameson, S. A. et al. Temporal transcriptional profiling of somatic and germ cells reveals biased lineage priming of sexual fate in the fetal mouse gonad. PLoS Genet. 8, e1002575 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostrer, H., Huang, H. Y., Masch, R. J. & Shapiro, E. A cellular study of human testis development. Sex. Dev. 1, 286–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Schnabel, C. A., Selleri, L. & Cleary, M. L. Pbx1 is essential for adrenal development and urogenital differentiation. Genesis 37, 123–130 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Capellini, T. D. et al. Scapula development is governed by genetic interactions of Pbx1 with its family members and with Emx2 via their cooperative control of Alx1. Development 137, 2559–2569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eozenou, C. et al. The TALE homeodomain of PBX1 is involved in human primary testis-determination. Hum. Mutat. 40, 1071–1076 (2019).

    CAS  PubMed  Google Scholar 

  • Biason-Lauber, A., Konrad, D., Meyer, M., DeBeaufort, C. & Schoenle, E. J. Ovaries and female phenotype in a girl with 46,XY karyotype and mutations in the CBX2 gene. Am. J. Hum. Genet. 84, 658–663 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart, D., Rodríguez Gutiérrez, D. & Biason-Lauber, A. CBX2 in DSD: the quirky kid on the block. Sex. Dev. 16, 162–170 (2022).

    Article  PubMed  Google Scholar 

  • Birk, O. S. et al. The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403, 909–913 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Ono, M. & Harley, V. R. Disorders of sex development: new genes, new concepts. Nat. Rev. Endocrinol. 9, 79–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Rey, R. A. & Grinspon, R. P. Normal male sexual differentiation and aetiology of disorders of sex development. Best. Pract. Res. Clin. Endocrinol. Metab. 25, 221–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Sekido, R. & Lovell-Badge, R. Sex determination and SRY: down to a wink and a nudge? Trends Genet. 25, 19–29 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya, I. & Dey, S. Emerging concepts on Leydig cell development in fetal and adult testis. Front. Endocrinol. 13, 1086276 (2022).

    Article  Google Scholar 

  • Tingen, C., Kim, A. & Woodruff, T. K. The primordial pool of follicles and nest breakdown in mammalian ovaries. Mol. Hum. Reprod. 15, 795–803 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerr, J. B., Myers, M. & Anderson, R. A. The dynamics of the primordial follicle reserve. Reproduction 146, R205–R215 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Young, J. M. & McNeilly, A. S. Theca: the forgotten cell of the ovarian follicle. Reproduction 140, 489–504 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., Peng, J., Matzuk, M. M. & Yao, H. H. Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells. Nat. Commun. 6, 6934 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Hatzirodos, N., Hummitzsch, K., Irving-Rodgers, H. F. & Rodgers, R. J. Transcriptome comparisons identify new cell markers for theca interna and granulosa cells from small and large antral ovarian follicles. PLoS ONE 10, e0119800 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Haber, D. A. et al. Alternative splicing and genomic structure of the Wilms tumor gene WT1. Proc. Natl Acad. Sci. USA 88, 9618–9622 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammes, A. et al. Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106, 319–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Sirokha, D. et al. A novel WT1 mutation identified in a 46,XX testicular/ovotesticular DSD patient results in the retention of Intron 9. Biology https://doi.org/10.3390/biology10121248 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • She, Z. Y. & Yang, W. X. Sry and SoxE genes: how they participate in mammalian sex determination and gonadal development? Semin. Cell Dev. Biol. 63, 13–22 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Bashamboo, A. & McElreavey, K. Mechanism of sex determination in humans: insights from disorders of sex development. Sex. Dev. 10, 313–325 (2016).

    Article  CAS  PubMed  Google Scholar 

  • van der Zwan, Y. G., Biermann, K., Wolffenbuttel, K. P., Cools, M. & Looijenga, L. H. Gonadal maldevelopment as risk factor for germ cell cancer: towards a clinical decision model. Eur. Urol. 67, 692–701 (2015).

    Article  PubMed  Google Scholar 

  • Bagheri-Fam, S. et al. Testis determination requires a specific FGFR2 isoform to repress FOXL2. Endocrinology 158, 3832–3843 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barseghyan, H. et al. Identification of novel candidate genes for 46,XY disorders of sex development (DSD) using a C57BL/6J-Y (POS) mouse model. Biol. Sex. Differ. 9, 8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabbri-Scallet, H. et al. Functional characterization of five NR5A1 gene mutations found in patients with 46,XY disorders of sex development. Hum. Mutat. 39, 114–123 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Granados, A. et al. MAP3K1-related gonadal dysgenesis: six new cases and review of the literature. Am. J. Med. Genet. C. Semin. Med. Genet. 175, 253–259 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagan, A. & Amarillo, I. E. Small copy-number variations involving genes of the FGF pathway in differences in sex development. Hum. Genome Var. 4, 17011 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuroki, S. et al. Rescuing the aberrant sex development of H3K9 demethylase Jmjd1a-deficient mice by modulating H3K9 methylation balance. PLoS Genet. 13, e1007034 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, F. et al. Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice. Science 357, 717–720 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottolenghi, C. et al. Foxl2 is required for commitment to ovary differentiation. Hum. Mol. Genet. 14, 2053–2062 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Chassot, A. A. et al. Activation of β-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Hum. Mol. Genet. 17, 1264–1277 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Chassot, A. A., Gillot, I. & Chaboissier, M. C. R-spondin1, WNT4, and the CTNNB1 signaling pathway: strict control over ovarian differentiation. Reproduction 148, R97–R110 (2014).

    Article  PubMed  Google Scholar 

  • Ohnesorg, T., Vilain, E. & Sinclair, A. H. The genetics of disorders of sex development in humans. Sex. Dev. 8, 262–272 (2014).

    Article  PubMed  Google Scholar 

  • Arboleda, V. A., Sandberg, D. E. & Vilain, E. DSDs: genetics, underlying pathologies and psychosexual differentiation. Nat. Rev. Endocrinol. 10, 603–615 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pannetier, M., Chassot, A. A., Chaboissier, M. C. & Pailhoux, E. Involvement of FOXL2 and RSPO1 in ovarian determination, development, and maintenance in mammals. Sex. Dev. 10, 167–184 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Pannetier, M. et al. FOXL2 activates P450 aromatase gene transcription: towards a better characterization of the early steps of mammalian ovarian development. J. Mol. Endocrinol. 36, 399–413 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Uhlenhaut, N. H. et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139, 1130–1142 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Tucker, E. J. The genetics and biology of FOXL2. Sex. Dev. 16, 184–193 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Pierson Smela, M. D. et al. Directed differentiation of human iPSCs to functional ovarian granulosa-like cells via transcription factor overexpression. Elife 12, e83291 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Edelsztein, N. Y., Valeri, C., Lovaisa, M. M., Schteingart, H. F. & Rey, R. A. AMH regulation by steroids in the mammalian testis: underlying mechanisms and clinical implications. Front. Endocrinol. 13, 906381 (2022).

    Article  Google Scholar 

  • Jost, A. Problems of fetal endocrinology: the gonadal and hypophyseal hormones. Recent. Progr Horm. Res. 8, 379–413 (1953).

    Google Scholar 

  • Roly, Z. Y. et al. The cell biology and molecular genetics of Mullerian duct development. Wiley Interdiscip. Rev. Dev. Biol. 7, e310 (2018).

    Article  PubMed  Google Scholar 

  • Rabinovici, J. & Jaffe, R. B. Development and regulation of growth and differentiated function in human and subhuman primate fetal gonads. Endocr. Rev. 11, 532–557 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Biason-Lauber, A. The battle of the sexes: human sex development and its disorders. Results Probl. Cell Differ. 58, 337–382 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Mendonca, B. B. et al. Steroid 5α-reductase 2 deficiency. J. Steroid Biochem. Mol. Biol. 163, 206–211 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Thankamony, A., Pasterski, V., Ong, K. K., Acerini, C. L. & Hughes, I. A. Anogenital distance as a marker of androgen exposure in humans. Andrology 4, 616–625 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay, J. J. What signals testis descent? Biol. Reprod. 83, 687–689 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Miller, W. L. & Auchus, R. J. The “backdoor pathway” of androgen synthesis in human male sexual development. PLoS Biol. 17, e3000198 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Shaughnessy, P. J. et al. Alternative (backdoor) androgen production and masculinization in the human fetus. PLoS Biol. 17, e3000002 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bay, K., Main, K. M., Toppari, J. & Skakkebaek, N. E. Testicular descent: INSL3, testosterone, genes and the intrauterine milieu. Nat. Rev. Urol. 8, 187–196 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Hutson, J. M. A biphasic model for the hormonal control of testicular descent. Lancet 2, 419–421 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Heyns, C. F. The gubernaculum during testicular descent in the human fetus. J. Anat. 153, 93–112 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barteczko, K. J. & Jacob, M. I. The testicular descent in human. Origin, development and fate of the gubernaculum Hunteri, processus vaginalis peritonei, and gonadal ligaments. Adv. Anat. Embryol. Cell Biol. 156, 1–98 (2000).

    Article  Google Scholar 

  • Hutson, J. M. et al. The regulation of testicular descent and the effects of cryptorchidism. Endocr. Rev. 34, 725–752 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Josso, N. & Picard, J. Y. Genetics of anti-Mullerian hormone and its signaling pathway. Best. Pract. Res. Clin. Endocrinol. Metab. 36, 101634 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Rajpert-De Meyts, E. et al. Expression of anti-Mullerian hormone during normal and pathological gonadal development: association with differentiation of Sertoli and granulosa cells. J. Clin. Endocrinol. Metab. 84, 3836–3844 (1999).

    PubMed  Google Scholar 

  • di Clemente, N., Racine, C., Pierre, A. & Taieb, J. Anti-mullerian hormone in female reproduction. Endocr. Rev. 42, 753–782 (2021).

    Article  PubMed  Google Scholar 

  • Du, H. & Taylor, H. S. The role of hox genes in female reproductive tract development, adult function, and fertility. Cold Spring Harb. Perspect. Med. 6, a023002 (2015).

    Article  PubMed  Google Scholar 

  • Blackless, M. et al. How sexually dimorphic are we? Review and synthesis. Am. J. Hum. Biol. 12, 151–166 (2000).

    Article  PubMed  Google Scholar 

  • Sax, L. How common is intersex? A response to Anne Fausto-Sterling. J. Sex. Res. 39, 174–178 (2002).

    Article  PubMed  Google Scholar 

  • Eggers, S. et al. Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort. Genome Biol. 17, 243 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Conway, G. S. Differences in sex development (DSD) and related conditions: mechanisms, prevalences and changing practice. Int. J. Impot. Res. 35, 46–50 (2023).

    Article  PubMed  Google Scholar 

  • Thyen, U., Lanz, K., Holterhus, P. M. & Hiort, O. Epidemiology and initial management of ambiguous genitalia at birth in Germany. Horm. Res. 66, 195–203 (2006).

    CAS  PubMed  Google Scholar 

  • Abdullah, M. A. et al. Ambiguous genitalia: medical, socio-cultural and religious factors affecting management in Saudi Arabia. Ann. Trop. Paediatr. 11, 343–348 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Aydin, B. K. et al. Frequency of ambiguous genitalia in 14,177 newborns in Turkey. J. Endocr. Soc. 3, 1185–1195 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazen, I., Hiort, O., Bassiouny, R. & El Gammal, M. Differential diagnosis of disorders of sex development in Egypt. Horm. Res. 70, 118–123 (2008).

    CAS  PubMed  Google Scholar 

  • Nassau, D. E. et al. Androgenization in Klinefelter syndrome: clinical spectrum from infancy through young adulthood. J. Pediatr. Urol. 17, 346–352 (2021).

    Article  PubMed  Google Scholar 

  • Syryn, H., Van De Vijver, K. & Cools, M. Ovotesticular difference of sex development: genetic background, histological features, and clinical management. Horm. Res. Paediatr. https://doi.org/10.1159/000519323 (2021).

    Article  PubMed  Google Scholar 

  • Berglund, A., Stochholm, K. & Gravholt, C. H. The epidemiology of sex chromosome abnormalities. Am. J. Med. Genet. C. Semin. Med. Genet. 184, 202–215 (2020).

    Article  PubMed  Google Scholar 

  • Gravholt, C. H., Viuff, M. H., Brun, S., Stochholm, K. & Andersen, N. H. Turner syndrome: mechanisms and management. Nat. Rev. Endocrinol. 15, 601–614 (2019).

    Article  PubMed  Google Scholar 

  • Huang, A. C., Olson, S. B. & Maslen, C. L. A review of recent developments in turner syndrome research. J. Cardiovasc. Dev. Dis. https://doi.org/10.3390/jcdd8110138 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zitzmann, M. & Rohayem, J. Gonadal dysfunction and beyond: clinical challenges in children, adolescents, and adults with 47,XXY Klinefelter syndrome. Am. J. Med. Genet. C. Semin. Med. Genet. 184, 302–312 (2020).

    Article  PubMed  Google Scholar 

  • Cools, M. et al. Caring for individuals with a difference of sex development (DSD): a Consensus Statement. Nat. Rev. Endocrinol. 14, 415–429 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Akcan, N. et al. Mutations in AR or SRD5A2 Genes: clinical findings, endocrine pitfalls, and genetic features of children with 46,XY DSD. J. Clin. Res. Pediatr. Endocrinol. https://doi.org/10.4274/jcrpe.galenos.2021.2021-9-19 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Berglund, A. et al. Incidence, prevalence, diagnostic delay, and clinical presentation of female 46,XY disorders of sex development. J. Clin. Endocrinol. Metab. 101, 4532–4540 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Peng, Y. et al. Identification of potential genes in pathogenesis and diagnostic value analysis of partial androgen insensitivity syndrome using bioinformatics analysis. Front. Endocrinol. 12, 731107 (2021).

    Article  Google Scholar 

  • Ulloa-Aguirre, A. et al. Incomplete regression of mullerian ducts in the androgen insensitivity syndrome. Fertil. Steril. 53, 1024–1028 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Van, Y. H. et al. Novel point mutations in complete androgen insensitivity syndrome with incomplete mullerian regression: two Taiwanese patients. Eur. J. Pediatr. 162, 781–784 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Damiani, D. et al. Persistence of Mullerian remnants in complete androgen insensitivity syndrome. J. Pediatr. Endocrinol. Metab. 15, 1553–1556 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Nichols, J. L., Bieber, E. J. & Gell, J. S. Case of sisters with complete androgen insensitivity syndrome and discordant Mullerian remnants. Fertil. Steril. 91, 932 e915–932 e938 (2009).

    Article  Google Scholar 

  • Audi, L. et al. Novel (60%) and recurrent (40%) androgen receptor gene mutations in a series of 59 patients with a 46,XY disorder of sex development. J. Clin. Endocrinol. Metab. 95, 1876–1888 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Philibert, P. et al. Complete androgen insensitivity syndrome is frequently due to premature stop codons in exon 1 of the androgen receptor gene: an international collaborative report of 13 new mutations. Fertil. Steril. 94, 472–476 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Guven, A., Dursun, F., Ozkanli, S., Gucluer, B. & Kuru, L. I. Complete androgen insensitivity syndrome and discordant Mullerian remnants: two cases with novel mutation in the androgen receptor. J. Pediatr. Endocrinol. Metab. 26, 909–914 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Dodge, S. T., Finkelston, M. S. & Miyazawa, K. Testicular feminization with incomplete Mullerian regression. Fertil. Steril. 43, 937–938 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb, B., Beitel, L. K., Nadarajah, A., Paliouras, M. & Trifiro, M. The androgen receptor gene mutations database: 2012 update. Hum. Mutat. 33, 887–894 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A. et al. Clinical, biochemical, and molecular characterization of Indian children with clinically suspected androgen insensitivity syndrome. Sex. Dev. 16, 34–45 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Hughes, I. A. et al. Androgen insensitivity syndrome. Lancet 380, 1419–1428 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Pizzo, A., Lagana, A. S., Borrielli, I. & Dugo, N. Complete androgen insensitivity syndrome: a rare case of disorder of sex development. Case Rep. Obstet. Gynecol. 2013, 232696 (2013).

    PubMed  PubMed Central  Google Scholar 

  • Wang, K. N., Chen, Q. Q., Zhu, Y. L. & Wang, C. L. Complete androgen insensitivity syndrome caused by the c.2678C>T mutation in the androgen receptor gene: a case report. World J. Clin. Cases 9, 11036–11042 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Han, B. et al. Differences of adrenal-derived androgens in 5α-reductase deficiency versus androgen insensitivity syndrome. Clin. Transl. Sci. 15, 658–666 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Ilaslan, E. et al. The FKBP4 gene, encoding a regulator of the androgen receptor signaling pathway, is a novel candidate gene for androgen insensitivity syndrome. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21218403 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hornig, N. C. et al. Identification of an AR mutation-negative class of androgen insensitivity by determining endogenous AR activity. J. Clin. Endocrinol. Metab. 101, 4468–4477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornig, N. C. & Holterhus, P. M. Molecular basis of androgen insensitivity syndromes. Mol. Cell. Endocrinol. 523, 111146 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Cools, M. & Looijenga, L. Update on the pathophysiology and risk factors for the development of malignant testicular germ cell tumors in complete androgen insensitivity syndrome. Sex. Dev. 11, 175–181 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Barros, B. A. et al. Complete androgen insensitivity syndrome and risk of gonadal malignancy: systematic review. Ann. Pediatr. Endocrinol. Metab. 26, 19–23 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cools, M., Drop, S. L., Wolffenbuttel, K. P., Oosterhuis, J. W. & Looijenga, L. H. Germ cell tumors in the intersex gonad: old paths, new directions, moving frontiers. Endocr. Rev. 27, 468–484 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Dohnert, U., Wunsch, L. & Hiort, O. Gonadectomy in complete androgen insensitivity syndrome: why and when? Sex. Dev. 11, 171–174 (2017).

    Article  PubMed  Google Scholar 

  • Michala, L., Goswami, D., Creighton, S. M. & Conway, G. S. Swyer syndrome: presentation and outcomes. BJOG 115, 737–741 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Gabriel Ribeiro de Andrade, J. et al. Long-term follow-up of patients with 46,XY partial gonadal dysgenesis reared as males. Int. J. Endocrinol. 2014, 480724 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ocal, G. et al. The clinical and genetic heterogeneity of mixed gonadal dysgenesis: does “disorders of sexual development (DSD)” classification based on new Chicago consensus cover all sex chromosome DSD? Eur. J. Pediatr. 171, 1497–1502 (2012).

    Article  PubMed  Google Scholar 

  • Das, D. V. & Jabbar, P. K. Clinical and reproductive characteristics of patients with mixed gonadal dysgenesis (45,X/46, XY). J. Obstet. Gynaecol. India 71, 399–405 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fine, S. et al. Mixed gonadal dysgenesis with an ovotestis on imaging mimicking ovotesticular disorder of sexual differentiation. Proc 34, 739–741 (2021).

    Google Scholar 

  • Weidler, E. M., Pearson, M., van Leeuwen, K. & Garvey, E. Clinical management in mixed gonadal dysgenesis with chromosomal mosaicism: considerations in newborns and adolescents. Semin. Pediatr. Surg. 28, 150841 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ljubicic, M. L. et al. Clinical but not histological outcomes in males with 45,X/46,XY mosaicism vary depending on reason for diagnosis. J. Clin. Endocrinol. Metab. 104, 4366–4381 (2019).

    Article  PubMed  Google Scholar 

  • Vasundhera, C., Jyotsna, V. P., Kandasamy, D. & Gupta, N. Clinical, hormonal and radiological profile of 46XY disorders of sexual development. Indian. J. Endocrinol. Metab. 20, 300–307 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elzaiat, M., McElreavey, K. & Bashamboo, A. Genetics of 46,XY gonadal dysgenesis. Best. Pract. Res. Clin. Endocrinol. Metab. 36, 101633 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Altunoglu, U. et al. Expanding the spectrum of syndromic PPP2R3C-related XY gonadal dysgenesis to XX gonadal dysgenesis. Clin. Genet. 101, 221–232 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Mazen, I. et al. A homozygous missense variant in hedgehog acyltransferase (HHAT) gene associated with 46,XY gonadal dysgenesis. Sex. Dev. https://doi.org/10.1159/000520366 (2022).

    Article  PubMed  Google Scholar 

  • White, S. et al. A multi-exon deletion within WWOX is associated with a 46,XY disorder of sex development. Eur. J. Hum. Genet. 20, 348–351 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Baetens, D. et al. Biallelic and monoallelic ESR2 variants associated with 46,XY disorders of sex development. Genet. Med. 20, 717–727 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Fabbri-Scallet, H. et al. Can non-coding NR5A1 gene variants explain phenotypes of disorders of sex development? Sex. Dev. https://doi.org/10.1159/000524956 (2022).

    Article  PubMed  Google Scholar 

  • Sreenivasan, R. et al. Mutant NR5A1/SF-1 in patients with disorders of sex development shows defective activation of the SOX9 TESCO enhancer. Hum. Mutat. 39, 1861–1874 (2018).

    Article  CAS  PubMed  Google Scholar 

  • McElreavey, K., Pailhoux, E. & Bashamboo, A. DHX37 and 46,XY DSD: a new ribosomopathy? Sex. Dev. 16, 194–206 (2022).

    Article  CAS  PubMed  Google Scholar 

  • da Silva, T. E. et al. Genetic evidence of the association of DEAH-box helicase 37 defects with 46,XY gonadal dysgenesis spectrum. J. Clin. Endocrinol. Metab. 104, 5923–5934 (2019).

    Article  PubMed  Google Scholar 

  • Bagheri-Fam, S. et al. Defective survival of proliferating Sertoli cells and androgen receptor function in a mouse model of the ATR-X syndrome. Hum. Mol. Genet. 20, 2213–2224 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Harley, V. R. & Goodfellow, P. N. The biochemical role of SRY in sex determination. Mol. Reprod. Dev. 39, 184–193 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Zhao, L. & Koopman, P. SRY protein function in sex determination: thinking outside the box. Chromosome Res. 20, 153–162 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Phillips, N. B. et al. SRY and human sex determination: the basic tail of the HMG box functions as a kinetic clamp to augment DNA bending. J. Mol. Biol. 358, 172–192 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Chamberlin, A. et al. Mutations in MAP3K1 that cause 46,XY disorders of sex development disrupt distinct structural domains in the protein. Hum. Mol. Genet. 28, 1620–1628 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Warr, N. et al. Gadd45γ and Map3k4 interactions regulate mouse testis determination via p38 MAPK-mediated control of Sry expression. Dev. Cell 23, 1020–1031 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cools, M. et al. Gonadal pathology and tumor risk in relation to clinical characteristics in patients with 45,X/46,XY mosaicism. J. Clin. Endocrinol. Metab. 96, E1171–E1180 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Lu, L., Luo, F. & Wang, X. Gonadal tumor risk in pediatric and adolescent phenotypic females with disorders of sex development and Y chromosomal constitution with different genetic etiologies. Front. Pediatr. 10, 856128 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, H., Wang, C. & Tian, Q. Gonadal tumour risk in 292 phenotypic female patients with disorders of sex development containing Y chromosome or Y-derived sequence. Clin. Endocrinol. 86, 621–627 (2017).

    Article  CAS  Google Scholar 

  • Batista, R. L. & Mendonca, B. B. Integrative and analytical review of the 5-alpha-reductase type 2 deficiency worldwide. Appl. Clin. Genet. 13, 83–96 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akcay, T. et al. AR and SRD5A2 gene mutations in a series of 51 Turkish 46,XY DSD children with a clinical diagnosis of androgen insensitivity. Andrology 2, 572–578 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Boudon, C. et al. A new deletion of the 5α-reductase type 2 gene in a Turkish family with 5 α-reductase deficiency. Clin. Endocrinol. 43, 183–188 (1995).

    Article  CAS  Google Scholar 

  • Ocal, G. et al. Mutations of the 5α-steroid reductase type 2 gene in six Turkish patients from unrelated families and a large pedigree of an isolated Turkish village. J. Pediatr. Endocrinol. Metab. 15, 411–421 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Nie, M., Zhou, Q., Mao, J., Lu, S. & Wu, X. Five novel mutations of SRD5A2 found in eight Chinese patients with 46,XY disorders of sex development. Mol. Hum. Reprod. 17, 57–62 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Zhu, H. et al. Phenotypic and molecular characteristics in eleven Chinese patients with 5α-reductase type 2 deficiency. Clin. Endocrinol. 81, 711–720 (2014).

    Article  CAS  Google Scholar 

  • Bertelloni, S. et al. 5α-reductase-2 deficiency: clinical findings, endocrine pitfalls, and genetic features in a large Italian cohort. Sex. Dev. 10, 28–36 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Imperato-McGinley, J., Guerrero, L., Gautier, T. & Peterson, R. E. Steroid 5α-reductase deficiency in man: an inherited form of male pseudohermaphroditism. Science 186, 1213–1215 (1974).

    Article  CAS  PubMed  Google Scholar 

  • Ko, J. M. et al. Clinical characterization and analysis of the SRD5A2 gene in six Korean patients with 5α-reductase type 2 deficiency. Horm. Res. Paediatr. 73, 41–48 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Mendonca, B. B. et al. Male pseudohermaphroditism due to steroid 5α-reductase 2 deficiency. Diagnosis, psychological evaluation, and management. Medicine 75, 64–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Sahakitrungruang, T. et al. Identification of mutations in the SRD5A2 gene in Thai patients with male pseudohermaphroditism. Fertil. Steril. 90, 2015.e11–2015.e15 (2008).

    Article  PubMed  Google Scholar 

  • Canto, P. et al. Mutations of the 5α-reductase type 2 gene in eight Mexican patients from six different pedigrees with 5α-reductase-2 deficiency. Clin. Endocrinol. 46, 155–160 (1997).

    Article  CAS  Google Scholar 

  • Maria Guadalupe, O. L., Katy, S. P., Charmina, A. A., Vihko, P. & Marta, M. Molecular characterization of two known SRD5A2 gene variants in Mexican patients with disorder of sexual development. Front. Genet. 12, 794476 (2021).

    Article  PubMed  Google Scholar 

  • Vilchis, F. et al. Molecular analysis of the SRD5A2 in 46,XY subjects with incomplete virilization: the P212R substitution of the steroid 5α-reductase 2 may constitute an ancestral founder mutation in Mexican patients. J. Androl. 31, 358–364 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Andonova, S. et al. New territory for an old disease: 5-α-reductase type 2 deficiency in Bulgaria. Sex. Dev. 11, 21–28 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Avendano, A. et al. 5α-Reductase type 2 deficiency in families from an isolated Andean population in Venezuela. Ann. Hum. Genet. 84, 151–160 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Cheon, C. K. Practical approach to steroid 5α-reductase type 2 deficiency. Eur. J. Pediatr. 170, 1–8 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Imperato-McGinley, J. & Zhu, Y. S. Androgens and male physiology the syndrome of 5α-reductase-2 deficiency. Mol. Cell Endocrinol. 198, 51–59 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Wilson, J. D., Griffin, J. E. & Russell, D. W. Steroid 5 α-reductase 2 deficiency. Endocr. Rev. 14, 577–593 (1993).

    CAS  PubMed  Google Scholar 

  • Maimoun, L. et al. Phenotypical, biological, and molecular heterogeneity of 5α-reductase deficiency: an extensive international experience of 55 patients. J. Clin. Endocrinol. Metab. 96, 296–307 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Pang, S. et al. Dihydrotestosterone and its relationship to testosterone in infancy and childhood. J. Clin. Endocrinol. Metab. 48, 821–826 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Costa, E. M., Domenice, S., Sircili, M. H., Inacio, M. & Mendonca, B. B. DSD due to 5α-reductase 2 deficiency — from diagnosis to long term outcome. Semin. Reprod. Med. 30, 427–431 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Walsh, P. C. et al. Familial incomplete male pseudohermaphroditism, type 2. Decreased dihydrotestosterone formation in pseudovaginal perineoscrotal hypospadias. N. Engl. J. Med. 291, 944–949 (1974).

    Article  CAS  PubMed  Google Scholar 

  • Mendonca, B. B. et al. Male pseudohermaphroditism due to 5 α reductase deficiency associated with gynecomastia. Rev. Hosp. Clin. Fac. Med. Sao Paulo 42, 66–68 (1987).

    CAS  PubMed  Google Scholar 

  • Kanakis, G. A. et al. EAA clinical practice guidelines — gynecomastia evaluation and management. Andrology 7, 778–793 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Imperato-McGinley, J., Peterson, R. E., Gautier, T. & Sturla, E. Androgens and the evolution of male-gender identity among male pseudohermaphrodites with 5α-reductase deficiency. N. Engl. J. Med. 300, 1233–1237 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Bertelloni, S., Russo, G. & Baroncelli, G. I. Human chorionic gonadotropin test: old uncertainties, new perspectives, and value in 46,XY disorders of sex development. Sex. Dev. 12, 41–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Cancio, M. et al. SRD5A2 gene mutations and polymorphisms in Spanish 46,XY patients with a disorder of sex differentiation. Int. J. Androl. 34, e526–e535 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Mendonca, B. B. Gender assignment in patients with disorder of sex development. Curr. Opin. Endocrinol. Diabetes Obes. 21, 511–514 (2014).

    Article  PubMed  Google Scholar 

  • Samtani, R., Bajpai, M., Ghosh, P. K. & Saraswathy, K. N. SRD5A2 gene mutations — a population-based review. Pediatr. Endocrinol. Rev. 8, 34–40 (2010).

    PubMed  Google Scholar 

  • Vija, L. et al. Testicular histological and immunohistochemical aspects in a post-pubertal patient with 5α-reductase type 2 deficiency: case report and review of the literature in a perspective of evaluation of potential fertility of these patients. BMC Endocr. Disord. 14, 43 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Claahsen-van der Grinten, H. L. et al. Congenital adrenal hyperplasia — current insights in pathophysiology, diagnostics, and management. Endocr. Rev. 43, 91–159 (2022).

    Article  PubMed  Google Scholar 

  • Terribile, M. et al. 46,XX Testicular disorder of sex development (DSD): a case report and systematic review. Medicina 55, 371 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Auchus, R. J. The uncommon forms of congenital adrenal hyperplasia. Curr. Opin. Endocrinol. Diabetes Obes. 29, 263–270 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Khalid, J. M. et al. Incidence and clinical features of congenital adrenal hyperplasia in Great Britain. Arch. Dis. Child. 97, 101–106 (2012).

    Article  PubMed  Google Scholar 

  • Gidlöf, S., Wedell, A., Guthenberg, C., von Döbeln, U. & Nordenström, A. Nationwide neonatal screening for congenital adrenal hyperplasia in Sweden: a 26-year longitudinal prospective population-based study. JAMA Pediatr. 168, 567–574 (2014).

    Article  PubMed  Google Scholar 

  • Li, Z. et al. Analysis of the screening results for congenital adrenal hyperplasia involving 7.85 million newborns in China: a systematic review and meta-analysis. Front. Endocrinol. 12, 624507 (2021).

    Article  Google Scholar 

  • El-Maouche, D., Arlt, W. & Merke, D. P. Congenital adrenal hyperplasia. Lancet 390, 2194–2210 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Gidlof, S. et al. One hundred years of congenital adrenal hyperplasia in Sweden: a retrospective, population-based cohort study. Lancet Diabetes Endocrinol. 1, 35–42 (2013).

    Article  PubMed  Google Scholar 

  • Merke, D. P. & Auchus, R. J. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. N. Engl. J. Med. 383, 1248–1261 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Neeman, B., Bello, R., Lazar, L., Phillip, M. & de Vries, L. Central precocious puberty as a presenting sign of nonclassical congenital adrenal hyperplasia: clinical characteristics. J. Clin. Endocrinol. Metab. 104, 2695–2700 (2019).

    Article  PubMed  Google Scholar 

  • Eugster, E. A. et al. Height outcome in congenital adrenal hyperplasia caused by 21-hydroxylase deficiency: a meta-analysis. J. Pediatr. 138, 26–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  • New, M. I. Extensive clinical experience: nonclassical 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 91, 4205–4214 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Al Wattar, B. H. et al. Clinical practice guidelines on the diagnosis and management of polycystic ovary syndrome: a systematic review and quality assessment study. J. Clin. Endocrinol. Metab. 106, 2436–2446 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Azziz, R. et al. Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an Androgen Excess Society guideline. J. Clin. Endocrinol. Metab. 91, 4237–4245 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Papadakis, G., Kandaraki, E. A., Tseniklidi, E., Papalou, O. & Diamanti-Kandarakis, E. Polycystic ovary syndrome and NC-CAH: distinct characteristics and common findings. A systematic review. Front. Endocrinol. 10, 388 (2019).

    Article  Google Scholar 

  • Mallappa, A. & Merke, D. P. Management challenges and therapeutic advances in congenital adrenal hyperplasia. Nat. Rev. Endocrinol. 18, 337–352 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merke, D. P. et al. Modified-release hydrocortisone in congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 106, e2063–e2077 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitaker, M. et al. An oral multiparticulate, modified-release, hydrocortisone replacement therapy that provides physiological cortisol exposure. Clin. Endocrinol. 80, 554–561 (2014).

    Article  CAS  Google Scholar 

  • Ruiz-Babot, G. et al. Modeling congenital adrenal hyperplasia and testing interventions for adrenal insufficiency using donor-specific reprogrammed cells. Cell Rep. 22, 1236–1249 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markmann, S. et al. Biology of the adrenal gland cortex obviates effective use of adeno-associated virus vectors to treat hereditary adrenal disorders. Hum. Gene Ther. 29, 403–412 (2018).

    Article  CAS  PubMed  Google Scholar 

  • US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04783181 (2023).

  • Bharucha, K. et al. ODP046 Initial lessons from a prescreening protocol to identify participants with classic CAH potentially eligible for gene therapy treatment with BBP-631, an adeno-associated virus (AAV) serotype 5-Based Recombinant Vector Encoding the Human CYP21A2 Gene. J. Endocr. Soc. 6, A60–A61 (2022).

    Article  PubMed Central  Google Scholar 

  • Yildiz, M. et al. Ovarian and paraovarian adrenal rest tumors are not uncommon in gonadectomy materials of historical congenital adrenal hyperplasia cases in childhood. Eur. J. Endocrinol. 187, K13–K18 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Nermoen, I. & Falhammar, H. Prevalence and characteristics of adrenal tumors and myelolipomas in congenital adrenal hyperplasia: a systematic review and meta-analysis. Endocr. Pract. 26, 1351–1365 (2020).

    Article  PubMed  Google Scholar 

  • Kim, M. S. et al. Testicular adrenal rest tumors in boys and young adults with congenital adrenal hyperplasia. J. Urol. 197, 931–936 (2017).

    Article  PubMed  Google Scholar 

  • Maciel-Guerra, A. T. et al. XX Maleness and XX true hermaphroditism in SRY-negative monozygotic twins: additional evidence for a common origin. J. Clin. Endocrinol. Metab. 93, 339–343 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Naasse, Y. et al. A novel homozygous missense mutation in the FU-CRD2 domain of the R-spondin1 gene associated with familial 46,XX DSD. Sex. Dev. 11, 269–274 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Grinspon, R. P. & Rey, R. A. Disorders of sex development with testicular differentiation in SRY-negative 46,XX individuals: clinical and genetic aspects. Sex. Dev. 10, 1–11 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Berglund, A. et al. Incidence, prevalence, diagnostic delay, morbidity, mortality and socioeconomic status in males with 46,XX disorders of sex development: a nationwide study. Hum. Reprod. 32, 1751–1760 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Eozenou, C. et al. Testis formation in XX individuals resulting from novel pathogenic variants in Wilms’ tumor 1 (WT1) gene. Proc. Natl Acad. Sci. USA 117, 13680–13688 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, J. et al. Duplication of SOX3 in an SRY-negative 46,XX male with prostatic utricle: case report and literature review. BMC Med. Genomics 15, 188 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes, N. L. et al. A 46,XX testicular disorder of sex development caused by a Wilms’ tumour Factor-1 (WT1) pathogenic variant. Clin. Genet. 95, 172–176 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Tallapaka, K., Venugopal, V., Dalal, A. & Aggarwal, S. Novel RSPO1 mutation causing 46,XX testicular disorder of sex development with palmoplantar keratoderma: a review of literature and expansion of clinical phenotype. Am. J. Med. Genet. A 176, 1006–1010 (2018).

    Article  PubMed  Google Scholar 

  • Parma, P. et al. R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat. Genet. 38, 1304–1309 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Mandel, H. et al. SERKAL syndrome: an autosomal-recessive disorder caused by a loss-of-function mutation in WNT4. Am. J. Hum. Genet. 82, 39–47 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baetens, D. et al. NR5A1 is a novel disease gene for 46,XX testicular and ovotesticular disorders of sex development. Genet. Med. 19, 367–376 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Bashamboo, A. et al. A recurrent p.Arg92Trp variant in steroidogenic factor-1 (NR5A1) can act as a molecular switch in human sex development. Hum. Mol. Genet. 25, 3446–3453 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knarston, I. M. et al. NR5A1 gene variants repress the ovarian-specific WNT signaling pathway in 46,XX disorders of sex development patients. Hum. Mutat. 40, 207–216 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Bashamboo, A. et al. Loss of function of the nuclear receptor NR2F2, encoding COUP-TF2, causes testis development and cardiac defects in 46,XX children. Am. J. Hum. Genet. 102, 487–493 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalheira, G. et al. The natural history of a man with ovotesticular 46,XX DSD caused by a novel 3-Mb 15q26.2 deletion containing NR2F2 gene. J. Endocr. Soc. 3, 2107–2113 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutton, E. et al. Identification of SOX3 as an XX male sex reversal gene in mice and humans. J. Clin. Invest. 121, 328–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Vetro, A. et al. Testis development in the absence of SRY: chromosomal rearrangements at SOX9 and SOX3. Eur. J. Hum. Genet. 23, 1025–1032 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Cox, J. J., Willatt, L., Homfray, T. & Woods, C. G. A SOX9 duplication and familial 46,XX developmental testicular disorder. N. Engl. J. Med. 364, 91–93 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Qian, Z. et al. Whole genome sequencing identifies a cryptic SOX9 regulatory element duplication underlying a case of 46,XX ovotesticular difference of sexual development. Am. J. Med. Genet. A 185, 2782–2788 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falah, N. et al. 22q11.2q13 duplication including SOX10 causes sex-reversal and peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease. Am. J. Med. Genet. A 173, 1066–1070 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seeherunvong, T. et al. 46,XX sex reversal with partial duplication of chromosome arm 22q. Am. J. Med. Genet. A 127a, 149–151 (2004).

    Article  PubMed  Google Scholar 

  • Croft, B. et al. Human sex reversal is caused by duplication or deletion of core enhancers upstream of SOX9. Nat. Commun. 9, 5319 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonen, N. et al. Sex reversal following deletion of a single distal enhancer of Sox9. Science 360, 1469–1473 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, M. et al. Expanding homogeneous culture of human primordial germ cell-like cells maintaining germline features without serum or feeder layers. Stem Cell Rep. 17, 507–521 (2022).

    Article  CAS  Google Scholar 

  • Ge, W. et al. Dissecting the initiation of female meiosis in the mouse at single-cell resolution. Cell. Mol. Life Sci. 78, 695–713 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Sproll, P. et al. Assembling the jigsaw puzzle: CBX2 isoform 2 and its targets in disorders/differences of sex development. Mol. Genet. Genom. Med. 6, 785–795 (2018).

    Article  CAS  Google Scholar 

  • Croft, B. et al. FGF9 variant in 46,XY DSD patient suggests a role for dimerization in sex determination. Clin. Genet. https://doi.org/10.1111/cge.14261 (2022).

    Article  PubMed  Google Scholar 

  • Bagheri-Fam, S. et al. FGFR2 mutation in 46,XY sex reversal with craniosynostosis. Hum. Mol. Genet. 24, 6699–6710 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar