nature.com

Buildings as a global carbon sink - Nature Sustainability

  • ️Schellnhuber, Hans Joachim
  • ️Mon Jan 27 2020

References

  1. Ward, P. & Kirschvink, J. A New History of Life: The New Discoveries About the Origins and Evolution of the Life on Earth (Bloomsbury Press, 2015).

  2. Nelsen, M. P., DiMichele, W. A., Peters, S. E. & Boyce, C. K. Delayed fungal evolution did not cause the Paleozoic peak in coal production. Proc. Natl Acad. Sci. USA 113, 2442–2447 (2016).

    CAS  Google Scholar 

  3. Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    CAS  Google Scholar 

  4. Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).

    CAS  Google Scholar 

  5. Hyvönen, R. et al. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol. 173, 463–480 (2007).

    Google Scholar 

  6. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS  Google Scholar 

  7. Reyer, C. Forest productivity under environmental change—a review of stand-scale modeling studies. Curr. For. Rep. 1, 53–68 (2015).

    Google Scholar 

  8. Friend, A. D. et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc. Natl Acad. Sci. USA 111, 3280–3285 (2014).

    CAS  Google Scholar 

  9. Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McMurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl Acad. Sci. USA 107, 19368–19373 (2010).

    CAS  Google Scholar 

  10. Luyssaert, S. et al. Trade-offs in using European forests to meet climate objectives. Nature 562, 259–262 (2018).

    CAS  Google Scholar 

  11. Reyer, C. P. O. et al. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests? Environ. Res. Lett. 12, 034027 (2017).

    Google Scholar 

  12. Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).

    Google Scholar 

  13. Seidl, R., Schelhaas, M.-J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806–810 (2014).

    CAS  Google Scholar 

  14. Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).

    CAS  Google Scholar 

  15. Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    CAS  Google Scholar 

  16. Paris Agreement (UNFCCC, 2015).

  17. Some Progress since Paris, but Not Enough, as Governments Amble towards 3°C of Warming (Climate Action Tracker, 2018).

  18. IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  19. Burns, W. & Nicholson, S. Bioenergy and carbon capture with storage (BECCS): the prospects and challenges of an emerging climate policy response. J. Environ. Stud. Sci. 7, 527–534 (2017).

    Google Scholar 

  20. Schulze, E.-D., Körner, C., Law, B. E., Haberl, H. & Luyssaert, S. Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral. GCB Bioenergy 4, 611–616 (2012).

    CAS  Google Scholar 

  21. Boysen, L. R. et al. The limits to global-warming mitigation by terrestrial carbon removal. Earth’s Future 5, 463–474 (2017).

    CAS  Google Scholar 

  22. United Nations Department of Economic and Social Affairs Population Division World Urbanization Prospects: The 2018 Revision (United Nations, 2018).

  23. Rockström, J. et al. A roadmap for rapid decarbonization. Science 355, 1269–1271 (2017).

    Google Scholar 

  24. Müller, D. B. et al. Carbon emissions of infrastructure development. Environ. Sci. Technol. 47, 11739–11746 (2013).

    Google Scholar 

  25. Gutowski, T. G., Sahni, S., Allwood, J. M., Ashby, M. F. & Worrell, E. The energy required to produce materials: constraints on energy-intensity improvements, parameters of demand. Philos. Trans. R. Soc. A 371, 20120003 (2013).

    Google Scholar 

  26. Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

    Google Scholar 

  27. Andrew, R. M. Global CO2 emissions from cement production, 1928–2017. Earth Syst. Sci. Data 10, 2213–2239 (2018).

    Google Scholar 

  28. Xi, F. et al. Substantial global carbon uptake by cement carbonation. Nat. Geosci. 9, 880–883 (2016).

    CAS  Google Scholar 

  29. Cullen, J. M., Allwood, J. M. & Bambach, M. D. Mapping the global flow of steel: from steelmaking to end-use goods. Environ. Sci. Technol. 46, 13048–13055 (2012).

    CAS  Google Scholar 

  30. UNEP Environmental Risks and Challenges of Anthropogenic Metals Flows and Cycles (UNEP DTIE, Sustainable Consumption and Production Branch, 2013).

  31. UNEP Recycling Rates of Metals - A Status Report (UNEP DTIE, Sustainable Consumption and Production Branch, 2011).

  32. Pauliuk, S., Milford, R. L., Müller, D. B. & Allwood, J. M. The Steel Scrap Age. Environ. Sci. Technol. 47, 3448–3454 (2013).

    CAS  Google Scholar 

  33. Reck, B. K. & Graedel, T. E. Challenges in metal recycling. Science 337, 690–695 (2012).

    CAS  Google Scholar 

  34. Torres, A., Brandt, J., Lear, K. & Liu, J. A looming tragedy of the sand commons. Science 357, 970–971 (2017).

    CAS  Google Scholar 

  35. Sonter, L. J. et al. Mining drives extensive deforestation in the Brazilian Amazon. Nat. Commun. 8, 1013 (2017).

    Google Scholar 

  36. Stapel, P. & van de Kuilen, J.-W. G. Effects of grading procedures on the scatter of characteristic values of European grown sawn timber. Mater. Struct. 46, 1587–1598 (2013).

    Google Scholar 

  37. Ridley-Ellis, D., Stapel, P. & Baño, V. Strength grading of sawn timber in Europe: an explanation for engineers and researchers. Eur. J. Wood Wood Prod. 74, 291–306 (2016).

    Google Scholar 

  38. Ramage, M. H. et al. The wood from the trees: the use of timber in construction. Renew. Sustain. Energy Rev. 68, 333–359 (2017).

    Google Scholar 

  39. Kobes, M., Helsloot, I., de Vries, B. & Post, J. G. Building safety and human behaviour in fire: a literature review. Fire Saf. J. 45, 1–11 (2010).

    Google Scholar 

  40. Buchanan, A. H. & Abu, A. K. Structural Design for Fire Safety 2nd edn (Wiley, 2017).

  41. Ramage, M. H. Supertall timber: functional natural materials for high-rise structures. Bridge 48, 33–36 (2018).

    Google Scholar 

  42. Organschi, A., Ruff, A., Oliver, C. D., Carbone, C. & Herrmann, E. Timber city: Growing an urban carbon sink with glue, screws, and cellulose fiber. In World Conference on Timber Engineering (WCTE) 2016 (eds Eberhardsteiner, J. et al.) 5612–5621 (TU Verlag, 2016).

  43. Moncaster, A. M., Pomponi, F., Symons, K. E. & Guthrie, P. M. Why method matters: temporal, spatial and physical variations in LCA and their impact on choice of structural system. Energy Build. 173, 389–398 (2018).

    Google Scholar 

  44. Smyth, C. E. et al. Quantifying the biophysical climate change mitigation potential of Canada’s forest sector. Biogeosciences 11, 3515–3529 (2014).

    Google Scholar 

  45. Werner, F., Taverna, R., Hofer, P. & Richter, K. Greenhouse gas dynamics of an increased use of wood in buildings in Switzerland. Clim. Change 74, 319–347 (2006).

    CAS  Google Scholar 

  46. Lundmark, T. et al. Potential roles of Swedish forestry in the context of climate change mitigation. Forests 5, 557–578 (2014).

    Google Scholar 

  47. Eriksson, L. O. et al. Climate change mitigation through increased wood use in the European construction sector—towards an integrated modelling framework. Eur. J. For. Res. 131, 131–144 (2012).

    Google Scholar 

  48. Oliver, C. D., Nassar, N. T., Lippke, B. R. & McCarter, J. B. Carbon, fossil fuel, and biodiversity mitigation with wood and forests. J. Sustain. For. 33, 248–275 (2014).

    Google Scholar 

  49. Churkina, G. Can use of Wood in Future Infrastructure Development Reduce Emissions of CO 2? (WBGU, 2016).

  50. Lin, C., Liu, G. & Müller, D. B. Characterizing the role of built environment stocks in human development and emission growth. Resour. Conserv. Recycl. 123, 67–72 (2017).

    Google Scholar 

  51. Administrative Report Report No. 12978 (City of Vancouver, 2019).

  52. BP Statistical Review of World Energy (BP Global, 2016).

  53. Lauk, C., Haberl, H., Erb, K.-H., Gingrich, S. & Krausmann, F. Global socioeconomic carbon stocks in long-lived products 1900–2008. Environ. Res. Lett. 7, 034023 (2012).

    Google Scholar 

  54. Köhl, M. et al. Changes in forest production, biomass and carbon: results from the 2015 UN FAO Global Forest Resource Assessment. For. Ecol. Manag. 352, 21–34 (2015).

    Google Scholar 

  55. Churkina, G. The role of urbanization in the global carbon cycle. Front. Ecol. Evol. 3, 144 (2016).

    Google Scholar 

  56. Made of Air (Made of Air GmbH, 2019); http://www.madeofair.com/

  57. Churkina, G., Brown, D. & Keoleian, G. A. Carbon stored in human settlements: the conterminous US. Glob. Change Biol. 16, 135–143 (2010).

    Google Scholar 

  58. Law, B. E. & Waring, R. H. Carbon implications of current and future effects of drought, fire and management on Pacific Northwest forests. For. Ecol. Manag. 355, 4–14 (2015).

    Google Scholar 

  59. Hossain, M. U. & Poon, C. S. Comparative LCA of wood waste management strategies generated from building construction activities. J. Clean. Prod. 177, 387–397 (2018).

    Google Scholar 

  60. Güneralp, B. et al. Global scenarios of urban density and its impacts on building energy use through 2050. Proc. Natl Acad. Sci. USA 114, 8945–8950 (2017).

    Google Scholar 

  61. Heeren, N. & Fishman, T. A database seed for a community-driven material intensity research platform. Sci. Data 6, 23 (2019).

    Google Scholar 

  62. Law, B. E. et al. Land use strategies to mitigate climate change in carbon dense temperate forests. Proc. Natl Acad. Sci. USA 115, 3663–3668 (2018).

    CAS  Google Scholar 

  63. 100% Wood (Thoma, 2019); https://www.thoma.at/100-percent-wood/?lang=en

  64. Mudd, G. M. The environmental sustainability of mining in Australia: key mega-trends and looming constraints. Resour. Policy 35, 98–115 (2010).

    Google Scholar 

  65. Cole, R. J. & Kernan, P. C. Life-cycle energy use in office buildings. Build. Environ. 31, 307–317 (1996).

    Google Scholar 

  66. Dixit, M. K. Life cycle recurrent embodied energy calculation of buildings: a review. J. Clean. Prod. 209, 731–754 (2019).

    Google Scholar 

  67. Pomponi, F. & Moncaster, A. Scrutinising embodied carbon in buildings: the next performance gap made manifest. Renew. Sustain. Energy Rev. 81, 2431–2442 (2018).

    Google Scholar 

  68. Ozarska, B. A review of the utilisation of hardwoods for LVL. Wood Sci. Technol. 33, 341–351 (1999).

    CAS  Google Scholar 

  69. Sharma, B., Gatóo, A., Bock, M. & Ramage, M. Engineered bamboo for structural applications. Constr. Build. Mater. 81, 66–73 (2015).

    Google Scholar 

  70. FAOSTAT-Forestry Database (FAO, 2016).

  71. Pilli, R., Grassi, G., Kurz, W. A., Fiorese, G. & Cescatti, A. The European forest sector: past and future carbon budget and fluxes under different management scenarios. Biogeosciences 14, 2387–2405 (2017).

    CAS  Google Scholar 

  72. Global Forest Resources Assessment 2015 (FAO, 2015).

  73. Carle, J. & Holmgren, P. Wood from planted forests. A global outlook 2005–2030. For. Prod. J. 58, 6–18 (2008).

    Google Scholar 

  74. Yousefpour, R., Nabel, J. E. M. S. & Pongratz, J. Simulating growth-based harvest adaptive to future climate change. Biogeosciences 16, 241–254 (2019).

    CAS  Google Scholar 

  75. Yuen, J. Q., Fung, T. & Ziegler, A. D. Carbon stocks in bamboo ecosystems worldwide: estimates and uncertainties. For. Ecol. Manag. 393, 113–138 (2017).

    Google Scholar 

  76. Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Change 3, 792–796 (2013).

    CAS  Google Scholar 

  77. Clark, C. W. Mathematical Bioeconomics: The Optimal Management of Renewable Resources (John Wiley, 1990).

  78. He, M. et al. Risk assessment of CO2 injection processes and storage in carboniferous formations: a review. J. Rock Mech. Geotech. Eng. 3, 39–56 (2011).

    Google Scholar 

  79. Zeng, N. Carbon sequestration via wood burial. Carbon Balance Manag. 3, 1 (2008).

    Google Scholar 

  80. General Guidelines for the Sustainable Management of Forests in Europe (Resolution H11 of MCPFE, 1993).

  81. Fritz, A. & Graves, A. Farmer Managed Natural Regeneration in the Sahel: A Literature Review (The Mitchell Group, 2016).

  82. Going Green: A Handbook of Sustainable Housing Practices in Developing Countries (UN-HABITAT, 2012).

  83. State of the World’s Forest 2011 (FAO, 2014).

Download references