pmc.ncbi.nlm.nih.gov

A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene

Abstract

Transcripts for a new form of Sox5, called L-Sox5, and Sox6 are coexpressed with Sox9 in all chondrogenic sites of mouse embryos. A coiled-coil domain located in the N-terminal part of L-Sox5, and absent in Sox5, showed >90% identity with a similar domain in Sox6 and mediated homodimerization and heterodimerization with Sox6. Dimerization of L-Sox5/Sox6 greatly increased efficiency of binding of the two Sox proteins to DNA containing adjacent HMG sites. L-Sox5, Sox6 and Sox9 cooperatively activated expression of the chondrocyte differentiation marker Col2a1 in 10T1/2 and MC615 cells. A 48 bp chondrocyte-specific enhancer in this gene, which contains several HMG-like sites that are necessary for enhancer activity, bound the three Sox proteins and was cooperatively activated by the three Sox proteins in non-chondrogenic cells. Our data suggest that L-Sox5/Sox6 and Sox9, which belong to two different classes of Sox transcription factors, cooperate with each other in expression of Col2a1 and possibly other genes of the chondrocytic program.

Full Text

The Full Text of this article is available as a PDF (972.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell D. M., Leung K. K., Wheatley S. C., Ng L. J., Zhou S., Ling K. W., Sham M. H., Koopman P., Tam P. P., Cheah K. S. SOX9 directly regulates the type-II collagen gene. Nat Genet. 1997 Jun;16(2):174–178. doi: 10.1038/ng0697-174. [DOI] [PubMed] [Google Scholar]
  2. Bridgewater L. C., Lefebvre V., de Crombrugghe B. Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer. J Biol Chem. 1998 Jun 12;273(24):14998–15006. doi: 10.1074/jbc.273.24.14998. [DOI] [PubMed] [Google Scholar]
  3. Cancedda R., Descalzi Cancedda F., Castagnola P. Chondrocyte differentiation. Int Rev Cytol. 1995;159:265–358. doi: 10.1016/s0074-7696(08)62109-9. [DOI] [PubMed] [Google Scholar]
  4. Cheah K. S., Lau E. T., Au P. K., Tam P. P. Expression of the mouse alpha 1(II) collagen gene is not restricted to cartilage during development. Development. 1991 Apr;111(4):945–953. doi: 10.1242/dev.111.4.945. [DOI] [PubMed] [Google Scholar]
  5. Connor F., Cary P. D., Read C. M., Preston N. S., Driscoll P. C., Denny P., Crane-Robinson C., Ashworth A. DNA binding and bending properties of the post-meiotically expressed Sry-related protein Sox-5. Nucleic Acids Res. 1994 Aug 25;22(16):3339–3346. doi: 10.1093/nar/22.16.3339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Connor F., Wright E., Denny P., Koopman P., Ashworth A. The Sry-related HMG box-containing gene Sox6 is expressed in the adult testis and developing nervous system of the mouse. Nucleic Acids Res. 1995 Sep 11;23(17):3365–3372. doi: 10.1093/nar/23.17.3365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Denny P., Swift S., Connor F., Ashworth A. An SRY-related gene expressed during spermatogenesis in the mouse encodes a sequence-specific DNA-binding protein. EMBO J. 1992 Oct;11(10):3705–3712. doi: 10.1002/j.1460-2075.1992.tb05455.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Foster J. W., Dominguez-Steglich M. A., Guioli S., Kwok C., Weller P. A., Stevanović M., Weissenbach J., Mansour S., Young I. D., Goodfellow P. N. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature. 1994 Dec 8;372(6506):525–530. doi: 10.1038/372525a0. [DOI] [PubMed] [Google Scholar]
  9. Giese K., Kingsley C., Kirshner J. R., Grosschedl R. Assembly and function of a TCR alpha enhancer complex is dependent on LEF-1-induced DNA bending and multiple protein-protein interactions. Genes Dev. 1995 Apr 15;9(8):995–1008. doi: 10.1101/gad.9.8.995. [DOI] [PubMed] [Google Scholar]
  10. Glumoff V., Savontaus M., Vehanen J., Vuorio E. Analysis of aggrecan and tenascin gene expression in mouse skeletal tissues by northern and in situ hybridization using species specific cDNA probes. Biochim Biophys Acta. 1994 Nov 22;1219(3):613–622. doi: 10.1016/0167-4781(94)90220-8. [DOI] [PubMed] [Google Scholar]
  11. Grosschedl R., Giese K., Pagel J. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet. 1994 Mar;10(3):94–100. doi: 10.1016/0168-9525(94)90232-1. [DOI] [PubMed] [Google Scholar]
  12. Hall B. K., Miyake T. Divide, accumulate, differentiate: cell condensation in skeletal development revisited. Int J Dev Biol. 1995 Dec;39(6):881–893. [PubMed] [Google Scholar]
  13. Kent J., Wheatley S. C., Andrews J. E., Sinclair A. H., Koopman P. A male-specific role for SOX9 in vertebrate sex determination. Development. 1996 Sep;122(9):2813–2822. doi: 10.1242/dev.122.9.2813. [DOI] [PubMed] [Google Scholar]
  14. Kido S., Hiraoka Y., Ogawa M., Sakai Y., Yoshimura Y., Aiso S. Cloning and characterization of mouse mSox13 cDNA. Gene. 1998 Feb 27;208(2):201–206. doi: 10.1016/s0378-1119(97)00667-7. [DOI] [PubMed] [Google Scholar]
  15. Komatsu N., Hiraoka Y., Shiozawa M., Ogawa M., Aiso S. Cloning and expression of Xenopus laevis xSox12 cDNA. Biochim Biophys Acta. 1996 Mar 1;1305(3):117–119. doi: 10.1016/0167-4781(95)00228-6. [DOI] [PubMed] [Google Scholar]
  16. Kwok C., Weller P. A., Guioli S., Foster J. W., Mansour S., Zuffardi O., Punnett H. H., Dominguez-Steglich M. A., Brook J. D., Young I. D. Mutations in SOX9, the gene responsible for Campomelic dysplasia and autosomal sex reversal. Am J Hum Genet. 1995 Nov;57(5):1028–1036. [PMC free article] [PubMed] [Google Scholar]
  17. Laudet V., Stehelin D., Clevers H. Ancestry and diversity of the HMG box superfamily. Nucleic Acids Res. 1993 May 25;21(10):2493–2501. doi: 10.1093/nar/21.10.2493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lefebvre V., Garofalo S., Zhou G., Metsäranta M., Vuorio E., De Crombrugghe B. Characterization of primary cultures of chondrocytes from type II collagen/beta-galactosidase transgenic mice. Matrix Biol. 1994 Aug;14(4):329–335. doi: 10.1016/0945-053x(94)90199-6. [DOI] [PubMed] [Google Scholar]
  19. Lefebvre V., Garofalo S., de Crombrugghe B. Type X collagen gene expression in mouse chondrocytes immortalized by a temperature-sensitive simian virus 40 large tumor antigen. J Cell Biol. 1995 Jan;128(1-2):239–245. doi: 10.1083/jcb.128.1.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lefebvre V., Huang W., Harley V. R., Goodfellow P. N., de Crombrugghe B. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol. 1997 Apr;17(4):2336–2346. doi: 10.1128/mcb.17.4.2336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lefebvre V., Zhou G., Mukhopadhyay K., Smith C. N., Zhang Z., Eberspaecher H., Zhou X., Sinha S., Maity S. N., de Crombrugghe B. An 18-base-pair sequence in the mouse proalpha1(II) collagen gene is sufficient for expression in cartilage and binds nuclear proteins that are selectively expressed in chondrocytes. Mol Cell Biol. 1996 Aug;16(8):4512–4523. doi: 10.1128/mcb.16.8.4512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lefebvre V., de Crombrugghe B. Toward understanding SOX9 function in chondrocyte differentiation. Matrix Biol. 1998 Mar;16(9):529–540. doi: 10.1016/s0945-053x(98)90065-8. [DOI] [PubMed] [Google Scholar]
  23. Lupas A. Coiled coils: new structures and new functions. Trends Biochem Sci. 1996 Oct;21(10):375–382. [PubMed] [Google Scholar]
  24. Mallein-Gerin F., Olsen B. R. Expression of simian virus 40 large T (tumor) oncogene in mouse chondrocytes induces cell proliferation without loss of the differentiated phenotype. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3289–3293. doi: 10.1073/pnas.90.8.3289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mansour S., Hall C. M., Pembrey M. E., Young I. D. A clinical and genetic study of campomelic dysplasia. J Med Genet. 1995 Jun;32(6):415–420. doi: 10.1136/jmg.32.6.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Meyer J., Südbeck P., Held M., Wagner T., Schmitz M. L., Bricarelli F. D., Eggermont E., Friedrich U., Haas O. A., Kobelt A. Mutational analysis of the SOX9 gene in campomelic dysplasia and autosomal sex reversal: lack of genotype/phenotype correlations. Hum Mol Genet. 1997 Jan;6(1):91–98. doi: 10.1093/hmg/6.1.91. [DOI] [PubMed] [Google Scholar]
  27. Morais da Silva S., Hacker A., Harley V., Goodfellow P., Swain A., Lovell-Badge R. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet. 1996 Sep;14(1):62–68. doi: 10.1038/ng0996-62. [DOI] [PubMed] [Google Scholar]
  28. Mukhopadhyay K., Lefebvre V., Zhou G., Garofalo S., Kimura J. H., de Crombrugghe B. Use of a new rat chondrosarcoma cell line to delineate a 119-base pair chondrocyte-specific enhancer element and to define active promoter segments in the mouse pro-alpha 1(II) collagen gene. J Biol Chem. 1995 Nov 17;270(46):27711–27719. doi: 10.1074/jbc.270.46.27711. [DOI] [PubMed] [Google Scholar]
  29. Ng L. J., Wheatley S., Muscat G. E., Conway-Campbell J., Bowles J., Wright E., Bell D. M., Tam P. P., Cheah K. S., Koopman P. SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol. 1997 Mar 1;183(1):108–121. doi: 10.1006/dbio.1996.8487. [DOI] [PubMed] [Google Scholar]
  30. Pevny L. H., Lovell-Badge R. Sox genes find their feet. Curr Opin Genet Dev. 1997 Jun;7(3):338–344. doi: 10.1016/s0959-437x(97)80147-5. [DOI] [PubMed] [Google Scholar]
  31. Reddi A. H. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol. 1998 Mar;16(3):247–252. doi: 10.1038/nbt0398-247. [DOI] [PubMed] [Google Scholar]
  32. Singh H., Clerc R. G., LeBowitz J. H. Molecular cloning of sequence-specific DNA binding proteins using recognition site probes. Biotechniques. 1989 Mar;7(3):252–261. [PubMed] [Google Scholar]
  33. Southard-Smith E. M., Kos L., Pavan W. J. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet. 1998 Jan;18(1):60–64. doi: 10.1038/ng0198-60. [DOI] [PubMed] [Google Scholar]
  34. Südbeck P., Schmitz M. L., Baeuerle P. A., Scherer G. Sex reversal by loss of the C-terminal transactivation domain of human SOX9. Nat Genet. 1996 Jun;13(2):230–232. doi: 10.1038/ng0696-230. [DOI] [PubMed] [Google Scholar]
  35. Takamatsu N., Kanda H., Tsuchiya I., Yamada S., Ito M., Kabeno S., Shiba T., Yamashita S. A gene that is related to SRY and is expressed in the testes encodes a leucine zipper-containing protein. Mol Cell Biol. 1995 Jul;15(7):3759–3766. doi: 10.1128/mcb.15.7.3759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vinson C. R., LaMarco K. L., Johnson P. F., Landschulz W. H., McKnight S. L. In situ detection of sequence-specific DNA binding activity specified by a recombinant bacteriophage. Genes Dev. 1988 Jul;2(7):801–806. doi: 10.1101/gad.2.7.801. [DOI] [PubMed] [Google Scholar]
  37. Wagner T., Wirth J., Meyer J., Zabel B., Held M., Zimmer J., Pasantes J., Bricarelli F. D., Keutel J., Hustert E. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994 Dec 16;79(6):1111–1120. doi: 10.1016/0092-8674(94)90041-8. [DOI] [PubMed] [Google Scholar]
  38. Walcz E., Deák F., Erhardt P., Coulter S. N., Fülöp C., Horvath P., Doege K. J., Glant T. T. Complete coding sequence, deduced primary structure, chromosomal localization, and structural analysis of murine aggrecan. Genomics. 1994 Jul 15;22(2):364–371. doi: 10.1006/geno.1994.1396. [DOI] [PubMed] [Google Scholar]
  39. Werner M. H., Burley S. K. Architectural transcription factors: proteins that remodel DNA. Cell. 1997 Mar 21;88(6):733–736. doi: 10.1016/s0092-8674(00)81917-0. [DOI] [PubMed] [Google Scholar]
  40. Wright E. M., Snopek B., Koopman P. Seven new members of the Sox gene family expressed during mouse development. Nucleic Acids Res. 1993 Feb 11;21(3):744–744. doi: 10.1093/nar/21.3.744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wright E., Hargrave M. R., Christiansen J., Cooper L., Kun J., Evans T., Gangadharan U., Greenfield A., Koopman P. The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nat Genet. 1995 Jan;9(1):15–20. doi: 10.1038/ng0195-15. [DOI] [PubMed] [Google Scholar]
  42. Wunderle V. M., Critcher R., Ashworth A., Goodfellow P. N. Cloning and characterization of SOX5, a new member of the human SOX gene family. Genomics. 1996 Sep 1;36(2):354–358. doi: 10.1006/geno.1996.0474. [DOI] [PubMed] [Google Scholar]
  43. Yamashita A., Suzuki S., Fujitani K., Kojima M., Kanda H., Ito M., Takamatsu N., Yamashita S., Shiba T. cDNA cloning of a novel rainbow trout SRY-type HMG box protein, rtSox23, and its functional analysis. Gene. 1998 Mar 16;209(1-2):193–200. doi: 10.1016/s0378-1119(98)00047-x. [DOI] [PubMed] [Google Scholar]
  44. Zhao Q., Eberspaecher H., Lefebvre V., De Crombrugghe B. Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev Dyn. 1997 Aug;209(4):377–386. doi: 10.1002/(SICI)1097-0177(199708)209:4<377::AID-AJA5>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  45. Zhou G., Garofalo S., Mukhopadhyay K., Lefebvre V., Smith C. N., Eberspaecher H., de Crombrugghe B. A 182 bp fragment of the mouse pro alpha 1(II) collagen gene is sufficient to direct chondrocyte expression in transgenic mice. J Cell Sci. 1995 Dec;108(Pt 12):3677–3684. doi: 10.1242/jcs.108.12.3677. [DOI] [PubMed] [Google Scholar]
  46. Zhou G., Lefebvre V., Zhang Z., Eberspaecher H., de Crombrugghe B. Three high mobility group-like sequences within a 48-base pair enhancer of the Col2a1 gene are required for cartilage-specific expression in vivo. J Biol Chem. 1998 Jun 12;273(24):14989–14997. doi: 10.1074/jbc.273.24.14989. [DOI] [PubMed] [Google Scholar]