Structure and physiological function of calpains
Abstract
For a long time now, two ubiquitously expressed mammalian calpain isoenzymes have been used to explore the structure and function of calpain. Although these two calpains, mu- and m-calpains, still attract intensive interest because of their unique characteristics, various distinct homologues to the protease domain of mu- and m-calpains have been identified in a variety of organisms. Some of these 'novel' calpain homologues are involved in important biological functions. For example, p94 (also called calpain 3), a mammalian calpain homologue predominantly expressed in skeletal muscle, is genetically proved to be responsible for limb-girdle muscular dystrophy type 2A. Tra-3, a calpain homologue in nematodes, is involved in the sex determination cascade during early development. PalB, a key gene product involved in the alkaline adaptation of Aspergillus nidulans, is the first example of a calpain homologue present in fungi. These findings indicate various important functional roles for intracellular proteases belonging to the calpain superfamily.
Full Text
The Full Text of this article is available as a PDF (949.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anagli J., Vilei E. M., Molinari M., Calderara S., Carafoli E. Purification of active calpain by affinity chromatography on an immobilized peptide inhibitor. Eur J Biochem. 1996 Nov 1;241(3):948–954. doi: 10.1111/j.1432-1033.1996.00948.x. [DOI] [PubMed] [Google Scholar]
- Andresen K., Tom T. D., Strand M. Characterization of cDNA clones encoding a novel calcium-activated neutral proteinase from Schistosoma mansoni. J Biol Chem. 1991 Aug 15;266(23):15085–15090. [PubMed] [Google Scholar]
- Aoki K., Imajoh S., Ohno S., Emori Y., Koike M., Kosaki G., Suzuki K. Complete amino acid sequence of the large subunit of the low-Ca2+-requiring form of human Ca2+-activated neutral protease (muCANP) deduced from its cDNA sequence. FEBS Lett. 1986 Sep 15;205(2):313–317. doi: 10.1016/0014-5793(86)80919-x. [DOI] [PubMed] [Google Scholar]
- Arthur J. S., Elce J. S. Interaction of aspartic acid-104 and proline-287 with the active site of m-calpain. Biochem J. 1996 Oct 15;319(Pt 2):535–541. doi: 10.1042/bj3190535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arthur J. S., Gauthier S., Elce J. S. Active site residues in m-calpain: identification by site-directed mutagenesis. FEBS Lett. 1995 Jul 24;368(3):397–400. doi: 10.1016/0014-5793(95)00691-2. [DOI] [PubMed] [Google Scholar]
- Asada K., Ishino Y., Shimada M., Shimojo T., Endo M., Kimizuka F., Kato I., Maki M., Hatanaka M., Murachi T. cDNA cloning of human calpastatin: sequence homology among human, pig, and rabbit calpastatins. J Enzyme Inhib. 1989;3(1):49–56. doi: 10.3109/14756368909030363. [DOI] [PubMed] [Google Scholar]
- Barnes T. M., Hodgkin J. The tra-3 sex determination gene of Caenorhabditis elegans encodes a member of the calpain regulatory protease family. EMBO J. 1996 Sep 2;15(17):4477–4484. [PMC free article] [PubMed] [Google Scholar]
- Barnes T. M., Hodgkin J. The tra-3 sex determination gene of Caenorhabditis elegans encodes a member of the calpain regulatory protease family. EMBO J. 1996 Sep 2;15(17):4477–4484. [PMC free article] [PubMed] [Google Scholar]
- Bartus R. T., Elliott P. J., Hayward N. J., Dean R. L., Harbeson S., Straub J. A., Li Z., Powers J. C. Calpain as a novel target for treating acute neurodegenerative disorders. Neurol Res. 1995 Aug;17(4):249–258. doi: 10.1080/01616412.1995.11740322. [DOI] [PubMed] [Google Scholar]
- Bartus R. T., Hayward N. J., Elliott P. J., Sawyer S. D., Baker K. L., Dean R. L., Akiyama A., Straub J. A., Harbeson S. L., Li Z. Calpain inhibitor AK295 protects neurons from focal brain ischemia. Effects of postocclusion intra-arterial administration. Stroke. 1994 Nov;25(11):2265–2270. doi: 10.1161/01.str.25.11.2265. [DOI] [PubMed] [Google Scholar]
- Berti P. J., Storer A. C. Alignment/phylogeny of the papain superfamily of cysteine proteases. J Mol Biol. 1995 Feb 17;246(2):273–283. doi: 10.1006/jmbi.1994.0083. [DOI] [PubMed] [Google Scholar]
- Blanchard H., Grochulski P., Li Y., Arthur J. S., Davies P. L., Elce J. S., Cygler M. Structure of a calpain Ca(2+)-binding domain reveals a novel EF-hand and Ca(2+)-induced conformational changes. Nat Struct Biol. 1997 Jul;4(7):532–538. doi: 10.1038/nsb0797-532. [DOI] [PubMed] [Google Scholar]
- Blanchard H., Li Y., Cygler M., Kay C. M., Simon J., Arthur C., Davies P. L., Elce J. S. Ca(2+)-binding domain VI of rat calpain is a homodimer in solution: hydrodynamic, crystallization and preliminary X-ray diffraction studies. Protein Sci. 1996 Mar;5(3):535–537. doi: 10.1002/pro.5560050317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blomgren K., Kawashima S., Saido T. C., Karlsson J. O., Elmered A., Hagberg H. Fodrin degradation and subcellular distribution of calpains after neonatal rat cerebral hypoxic-ischemia. Brain Res. 1995 Jul 3;684(2):143–149. doi: 10.1016/0006-8993(95)00399-b. [DOI] [PubMed] [Google Scholar]
- Blumenthal E. J., Miller A. C., Stein G. H., Malkinson A. M. Serine/threonine protein kinases and calcium-dependent protease in senescent IMR-90 fibroblasts. Mech Ageing Dev. 1993 Nov;72(1):13–24. doi: 10.1016/0047-6374(93)90127-d. [DOI] [PubMed] [Google Scholar]
- Bowman S., Churcher C., Badcock K., Brown D., Chillingworth T., Connor R., Dedman K., Devlin K., Gentles S., Hamlin N. The nucleotide sequence of Saccharomyces cerevisiae chromosome XIII. Nature. 1997 May 29;387(6632 Suppl):90–93. [PubMed] [Google Scholar]
- Boyhan A., Casimir C. M., French J. K., Teahan C. G., Segal A. W. Molecular cloning and characterization of grancalcin, a novel EF-hand calcium-binding protein abundant in neutrophils and monocytes. J Biol Chem. 1992 Feb 15;267(5):2928–2933. [PubMed] [Google Scholar]
- Busch W. A., Stromer M. H., Goll D. E., Suzuki A. Ca 2+ -specific removal of Z lines from rabbit skeletal muscle. J Cell Biol. 1972 Feb;52(2):367–381. doi: 10.1083/jcb.52.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caelles C., Helmberg A., Karin M. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature. 1994 Jul 21;370(6486):220–223. doi: 10.1038/370220a0. [DOI] [PubMed] [Google Scholar]
- Campbell K. P. Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell. 1995 Mar 10;80(5):675–679. doi: 10.1016/0092-8674(95)90344-5. [DOI] [PubMed] [Google Scholar]
- Corasaniti M. T., Navarra M., Catani M. V., Melino G., Nisticò G., Finazzi-Agrò A. NMDA and HIV-1 coat protein, GP120, produce necrotic but not apoptotic cell death in human CHP100 neuroblastoma cultures via a mechanism involving calpain. Biochem Biophys Res Commun. 1996 Dec 4;229(1):299–304. doi: 10.1006/bbrc.1996.1796. [DOI] [PubMed] [Google Scholar]
- Crawford C., Brown N. R., Willis A. C. Studies of the active site of m-calpain and the interaction with calpastatin. Biochem J. 1993 Nov 15;296(Pt 1):135–142. doi: 10.1042/bj2960135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cryns V. L., Bergeron L., Zhu H., Li H., Yuan J. Specific cleavage of alpha-fodrin during Fas- and tumor necrosis factor-induced apoptosis is mediated by an interleukin-1beta-converting enzyme/Ced-3 protease distinct from the poly(ADP-ribose) polymerase protease. J Biol Chem. 1996 Dec 6;271(49):31277–31282. doi: 10.1074/jbc.271.49.31277. [DOI] [PubMed] [Google Scholar]
- DeLuca C. I., Davies P. L., Samis J. A., Elce J. S. Molecular cloning and bacterial expression of cDNA for rat calpain II 80 kDa subunit. Biochim Biophys Acta. 1993 Oct 19;1216(1):81–93. doi: 10.1016/0167-4781(93)90040-k. [DOI] [PubMed] [Google Scholar]
- Delaney S. J., Hayward D. C., Barleben F., Fischbach K. F., Miklos G. L. Molecular cloning and analysis of small optic lobes, a structural brain gene of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7214–7218. doi: 10.1073/pnas.88.16.7214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denison S. H., Orejas M., Arst H. N., Jr Signaling of ambient pH in Aspergillus involves a cysteine protease. J Biol Chem. 1995 Dec 1;270(48):28519–28522. doi: 10.1074/jbc.270.48.28519. [DOI] [PubMed] [Google Scholar]
- Elce J. S., Hegadorn C., Arthur J. S. Autolysis, Ca2+ requirement, and heterodimer stability in m-calpain. J Biol Chem. 1997 Apr 25;272(17):11268–11275. doi: 10.1074/jbc.272.17.11268. [DOI] [PubMed] [Google Scholar]
- Ellis H. M., Horvitz H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell. 1986 Mar 28;44(6):817–829. doi: 10.1016/0092-8674(86)90004-8. [DOI] [PubMed] [Google Scholar]
- Emori Y., Kawasaki H., Imajoh S., Imahori K., Suzuki K. Endogenous inhibitor for calcium-dependent cysteine protease contains four internal repeats that could be responsible for its multiple reactive sites. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3590–3594. doi: 10.1073/pnas.84.11.3590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emori Y., Kawasaki H., Imajoh S., Kawashima S., Suzuki K. Isolation and sequence analysis of cDNA clones for the small subunit of rabbit calcium-dependent protease. J Biol Chem. 1986 Jul 15;261(20):9472–9476. [PubMed] [Google Scholar]
- Emori Y., Kawasaki H., Sugihara H., Imajoh S., Kawashima S., Suzuki K. Isolation and sequence analyses of cDNA clones for the large subunits of two isozymes of rabbit calcium-dependent protease. J Biol Chem. 1986 Jul 15;261(20):9465–9471. [PubMed] [Google Scholar]
- Emori Y., Saigo K. Calpain localization changes in coordination with actin-related cytoskeletal changes during early embryonic development of Drosophila. J Biol Chem. 1994 Oct 7;269(40):25137–25142. [PubMed] [Google Scholar]
- Fardeau M., Eymard B., Mignard C., Tomé F. M., Richard I., Beckmann J. S. Chromosome 15-linked limb-girdle muscular dystrophy: clinical phenotypes in Reunion Island and French metropolitan communities. Neuromuscul Disord. 1996 Dec;6(6):447–453. doi: 10.1016/s0960-8966(96)00387-2. [DOI] [PubMed] [Google Scholar]
- Fardeau M., Hillaire D., Mignard C., Feingold N., Feingold J., Mignard D., de Ubeda B., Collin H., Tome F. M., Richard I. Juvenile limb-girdle muscular dystrophy. Clinical, histopathological and genetic data from a small community living in the Reunion Island. Brain. 1996 Feb;119(Pt 1):295–308. doi: 10.1093/brain/119.1.295. [DOI] [PubMed] [Google Scholar]
- Figueiredo-Pereira M. E., Banik N., Wilk S. Comparison of the effect of calpain inhibitors on two extralysosomal proteinases: the multicatalytic proteinase complex and m-calpain. J Neurochem. 1994 May;62(5):1989–1994. doi: 10.1046/j.1471-4159.1994.62051989.x. [DOI] [PubMed] [Google Scholar]
- Fraser A., Evan G. A license to kill. Cell. 1996 Jun 14;85(6):781–784. doi: 10.1016/s0092-8674(00)81005-3. [DOI] [PubMed] [Google Scholar]
- GUROFF G. A NEUTRAL, CALCIUM-ACTIVATED PROTEINASE FROM THE SOLUBLE FRACTION OF RAT BRAIN. J Biol Chem. 1964 Jan;239:149–155. [PubMed] [Google Scholar]
- Goll D. E., Thompson V. F., Taylor R. G., Zalewska T. Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? Bioessays. 1992 Aug;14(8):549–556. doi: 10.1002/bies.950140810. [DOI] [PubMed] [Google Scholar]
- Gonen H., Shkedy D., Barnoy S., Kosower N. S., Ciechanover A. On the involvement of calpains in the degradation of the tumor suppressor protein p53. FEBS Lett. 1997 Apr 7;406(1-2):17–22. doi: 10.1016/s0014-5793(97)00225-1. [DOI] [PubMed] [Google Scholar]
- Graham-Siegenthaler K., Gauthier S., Davies P. L., Elce J. S. Active recombinant rat calpain II. Bacterially produced large and small subunits associate both in vivo and in vitro. J Biol Chem. 1994 Dec 2;269(48):30457–30460. [PubMed] [Google Scholar]
- Grynspan F., Griffin W. B., Mohan P. S., Shea T. B., Nixon R. A. Calpains and calpastatin in SH-SY5Y neuroblastoma cells during retinoic acid-induced differentiation and neurite outgrowth: comparison with the human brain calpain system. J Neurosci Res. 1997 May 1;48(3):181–191. [PubMed] [Google Scholar]
- Hamada H., Okochi E., Oh-hara T., Tsuruo T. Purification of the Mr 22,000 calcium-binding protein (sorcin) associated with multidrug resistance and its detection with monoclonal antibodies. Cancer Res. 1988 Jun 1;48(11):3173–3178. [PubMed] [Google Scholar]
- Haupt Y., Maya R., Kazaz A., Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997 May 15;387(6630):296–299. doi: 10.1038/387296a0. [DOI] [PubMed] [Google Scholar]
- Haupt Y., Rowan S., Shaulian E., Vousden K. H., Oren M. Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev. 1995 Sep 1;9(17):2170–2183. doi: 10.1101/gad.9.17.2170. [DOI] [PubMed] [Google Scholar]
- Hodgkin J. Sex determination in the nematode C. elegans: analysis of tra-3 suppressors and characterization of fem genes. Genetics. 1986 Sep;114(1):15–52. doi: 10.1093/genetics/114.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hollstein M., Rice K., Greenblatt M. S., Soussi T., Fuchs R., Sørlie T., Hovig E., Smith-Sørensen B., Montesano R., Harris C. C. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 1994 Sep;22(17):3551–3555. [PMC free article] [PubMed] [Google Scholar]
- Hrabetova S., Sacktor T. C. Bidirectional regulation of protein kinase M zeta in the maintenance of long-term potentiation and long-term depression. J Neurosci. 1996 Sep 1;16(17):5324–5333. doi: 10.1523/JNEUROSCI.16-17-05324.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huston R. B., Krebs E. G. Activation of skeletal muscle phosphorylase kinase by Ca2+. II. Identification of the kinase activating factor as a proteolytic enzyme. Biochemistry. 1968 Jun;7(6):2116–2122. doi: 10.1021/bi00846a014. [DOI] [PubMed] [Google Scholar]
- Imajoh S., Aoki K., Ohno S., Emori Y., Kawasaki H., Sugihara H., Suzuki K. Molecular cloning of the cDNA for the large subunit of the high-Ca2+-requiring form of human Ca2+-activated neutral protease. Biochemistry. 1988 Oct 18;27(21):8122–8128. doi: 10.1021/bi00421a022. [DOI] [PubMed] [Google Scholar]
- Imajoh S., Kawasaki H., Suzuki K. The COOH-terminal E-F hand structure of calcium-activated neutral protease (CANP) is important for the association of subunits and resulting proteolytic activity. J Biochem. 1987 Feb;101(2):447–452. doi: 10.1093/oxfordjournals.jbchem.a121930. [DOI] [PubMed] [Google Scholar]
- Inomata M., Hayashi M., Ohno-Iwashita Y., Tsubuki S., Saido T. C., Kawashima S. Involvement of calpain in integrin-mediated signal transduction. Arch Biochem Biophys. 1996 Apr 1;328(1):129–134. doi: 10.1006/abbi.1996.0152. [DOI] [PubMed] [Google Scholar]
- Ishida S., Emori Y., Suzuki K. Rat calpastatin has diverged primary sequence from other mammalian calpastatins but retains functionally important sequences. Biochim Biophys Acta. 1991 Mar 26;1088(3):436–438. doi: 10.1016/0167-4781(91)90139-d. [DOI] [PubMed] [Google Scholar]
- Ishiura S., Murofushi H., Suzuki K., Imahori K. Studies of a calcium-activated neutral protease from chicken skeletal muscle. I. Purification and characterization. J Biochem. 1978 Jul;84(1):225–230. doi: 10.1093/oxfordjournals.jbchem.a132111. [DOI] [PubMed] [Google Scholar]
- Ishiura S., Nonaka I., Sugita H. Suppression of calcium-induced removal of the Z-line by a thiol-protease inhibitor, E-64-c. J Biochem. 1981 Jul;90(1):283–285. [PubMed] [Google Scholar]
- Jordán J., Galindo M. F., Miller R. J. Role of calpain- and interleukin-1 beta converting enzyme-like proteases in the beta-amyloid-induced death of rat hippocampal neurons in culture. J Neurochem. 1997 Apr;68(4):1612–1621. doi: 10.1046/j.1471-4159.1997.68041612.x. [DOI] [PubMed] [Google Scholar]
- KREBS E. G., LOVE D. S., BRATVOLD G. E., TRAYSER K. A., MEYER W. L., FISCHER E. H. PURIFICATION AND PROPERTIES OF RABBIT SKELETAL MUSCLE PHOSPHORYLASE B KINASE. Biochemistry. 1964 Aug;3:1022–1033. doi: 10.1021/bi00896a003. [DOI] [PubMed] [Google Scholar]
- Kageyama H., Shimizu M., Tokunaga K., Hiwasa T., Sakiyama S. A partial cDNA for a novel protein which has a typical E-F hand structure. Biochim Biophys Acta. 1989 Jul 7;1008(2):255–257. doi: 10.1016/0167-4781(80)90018-4. [DOI] [PubMed] [Google Scholar]
- Kampfl A., Posmantur R. M., Zhao X., Schmutzhard E., Clifton G. L., Hayes R. L. Mechanisms of calpain proteolysis following traumatic brain injury: implications for pathology and therapy: implications for pathology and therapy: a review and update. J Neurotrauma. 1997 Mar;14(3):121–134. doi: 10.1089/neu.1997.14.121. [DOI] [PubMed] [Google Scholar]
- Karcz S. R., Podesta R. B., Siddiqui A. A., Dekaban G. A., Strejan G. H., Clarke M. W. Molecular cloning and sequence analysis of a calcium-activated neutral protease (calpain) from Schistosoma mansoni. Mol Biochem Parasitol. 1991 Dec;49(2):333–336. doi: 10.1016/0166-6851(91)90078-k. [DOI] [PubMed] [Google Scholar]
- Kawasaki H., Emori Y., Suzuki K. Calpastatin has two distinct sites for interaction with calpain--effect of calpastatin fragments on the binding of calpain to membranes. Arch Biochem Biophys. 1993 Sep;305(2):467–472. doi: 10.1006/abbi.1993.1448. [DOI] [PubMed] [Google Scholar]
- Kawasaki H., Kawashima S. Regulation of the calpain-calpastatin system by membranes (review). Mol Membr Biol. 1996 Oct-Dec;13(4):217–224. doi: 10.3109/09687689609160599. [DOI] [PubMed] [Google Scholar]
- Kawasaki H., Kretsinger R. H. Calcium-binding proteins 1: EF-hands. Protein Profile. 1995;2(4):297–490. [PubMed] [Google Scholar]
- Killefer J., Koohmaraie M. Bovine skeletal muscle calpastatin: cloning, sequence analysis, and steady-state mRNA expression. J Anim Sci. 1994 Mar;72(3):606–614. doi: 10.2527/1994.723606x. [DOI] [PubMed] [Google Scholar]
- Kinbara K., Sorimachi H., Ishiura S., Suzuki K. Muscle-specific calpain, p94, interacts with the extreme C-terminal region of connectin, a unique region flanked by two immunoglobulin C2 motifs. Arch Biochem Biophys. 1997 Jun 1;342(1):99–107. doi: 10.1006/abbi.1997.0108. [DOI] [PubMed] [Google Scholar]
- Kondo S. I., Kawamura K., Iwanaga J., Hamada M., Aoyagi T. Isolation and characterization of leupeptins produced by Actinomycetes. Chem Pharm Bull (Tokyo) 1969 Sep;17(9):1896–1901. doi: 10.1248/cpb.17.1896. [DOI] [PubMed] [Google Scholar]
- Kouchi Z., Saido T. C., Ohyama H., Maruta H., Suzuki K., Tanuma S. The restrictive proteolysis of alpha-fodrin to a 120 kDa fragment is not catalyzed by calpains during thymic apoptosis. Apoptosis. 1997;2(1):84–90. doi: 10.1023/a:1026443926962. [DOI] [PubMed] [Google Scholar]
- Kretsinger R. H. EF-hands embrace. Nat Struct Biol. 1997 Jul;4(7):514–516. doi: 10.1038/nsb0797-514. [DOI] [PubMed] [Google Scholar]
- Kretsinger R. H. EF-hands reach out. Nat Struct Biol. 1996 Jan;3(1):12–15. doi: 10.1038/nsb0196-12. [DOI] [PubMed] [Google Scholar]
- Kubbutat M. H., Jones S. N., Vousden K. H. Regulation of p53 stability by Mdm2. Nature. 1997 May 15;387(6630):299–303. doi: 10.1038/387299a0. [DOI] [PubMed] [Google Scholar]
- Kubbutat M. H., Vousden K. H. Proteolytic cleavage of human p53 by calpain: a potential regulator of protein stability. Mol Cell Biol. 1997 Jan;17(1):460–468. doi: 10.1128/mcb.17.1.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuwabara P. E., Okkema P. G., Kimble J. tra-2 encodes a membrane protein and may mediate cell communication in the Caenorhabditis elegans sex determination pathway. Mol Biol Cell. 1992 Apr;3(4):461–473. doi: 10.1091/mbc.3.4.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuwaki T., Satoh H., Ono T., Shibayama F., Yamashita T., Nishimura T. Nilvadipine attenuates ischemic degradation of gerbil brain cytoskeletal proteins. Stroke. 1989 Jan;20(1):78–83. doi: 10.1161/01.str.20.1.78. [DOI] [PubMed] [Google Scholar]
- Lambert M., Blanchin-Roland S., Le Louedec F., Lepingle A., Gaillardin C. Genetic analysis of regulatory mutants affecting synthesis of extracellular proteinases in the yeast Yarrowia lipolytica: identification of a RIM101/pacC homolog. Mol Cell Biol. 1997 Jul;17(7):3966–3976. doi: 10.1128/mcb.17.7.3966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee N. H., Weinstock K. G., Kirkness E. F., Earle-Hughes J. A., Fuldner R. A., Marmaros S., Glodek A., Gocayne J. D., Adams M. D., Kerlavage A. R. Comparative expressed-sequence-tag analysis of differential gene expression profiles in PC-12 cells before and after nerve growth factor treatment. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8303–8307. doi: 10.1073/pnas.92.18.8303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee W. J., Ma H., Takano E., Yang H. Q., Hatanaka M., Maki M. Molecular diversity in amino-terminal domains of human calpastatin by exon skipping. J Biol Chem. 1992 Apr 25;267(12):8437–8442. [PubMed] [Google Scholar]
- Li W., Mitchell A. P. Proteolytic activation of Rim1p, a positive regulator of yeast sporulation and invasive growth. Genetics. 1997 Jan;145(1):63–73. doi: 10.1093/genetics/145.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Z., Ortega-Vilain A. C., Patil G. S., Chu D. L., Foreman J. E., Eveleth D. D., Powers J. C. Novel peptidyl alpha-keto amide inhibitors of calpains and other cysteine proteases. J Med Chem. 1996 Sep 27;39(20):4089–4098. doi: 10.1021/jm950541c. [DOI] [PubMed] [Google Scholar]
- Li Z., Patil G. S., Golubski Z. E., Hori H., Tehrani K., Foreman J. E., Eveleth D. D., Bartus R. T., Powers J. C. Peptide alpha-keto ester, alpha-keto amide, and alpha-keto acid inhibitors of calpains and other cysteine proteases. J Med Chem. 1993 Oct 29;36(22):3472–3480. doi: 10.1021/jm00074a031. [DOI] [PubMed] [Google Scholar]
- Lin G. D., Chattopadhyay D., Maki M., Wang K. K., Carson M., Jin L., Yuen P. W., Takano E., Hatanaka M., DeLucas L. J. Crystal structure of calcium bound domain VI of calpain at 1.9 A resolution and its role in enzyme assembly, regulation, and inhibitor binding. Nat Struct Biol. 1997 Jul;4(7):539–547. doi: 10.1038/nsb0797-539. [DOI] [PubMed] [Google Scholar]
- Lu Q., Mellgren R. L. Calpain inhibitors and serine protease inhibitors can produce apoptosis in HL-60 cells. Arch Biochem Biophys. 1996 Oct 1;334(1):175–181. doi: 10.1006/abbi.1996.0443. [DOI] [PubMed] [Google Scholar]
- Ma H., Yang H. Q., Takano E., Hatanaka M., Maki M. Amino-terminal conserved region in proteinase inhibitor domain of calpastatin potentiates its calpain inhibitory activity by interacting with calmodulin-like domain of the proteinase. J Biol Chem. 1994 Sep 30;269(39):24430–24436. [PubMed] [Google Scholar]
- Maki C. G., Huibregtse J. M., Howley P. M. In vivo ubiquitination and proteasome-mediated degradation of p53(1). Cancer Res. 1996 Jun 1;56(11):2649–2654. [PubMed] [Google Scholar]
- Maki M., Ma H., Takano E., Adachi Y., Lee W. J., Hatanaka M., Murachi T. Calpastatins: biochemical and molecular biological studies. Biomed Biochim Acta. 1991;50(4-6):509–516. [PubMed] [Google Scholar]
- McCelland P., Lash J. A., Hathaway D. R. Identification of major autolytic cleavage sites in the regulatory subunit of vascular calpain II. A comparison of partial amino-terminal sequences to deduced sequence from complementary DNA. J Biol Chem. 1989 Oct 15;264(29):17428–17431. [PubMed] [Google Scholar]
- McGowan E. B., Becker E., Detwiler T. C. Inhibition of calpain in intact platelets by the thiol protease inhibitor E-64d. Biochem Biophys Res Commun. 1989 Jan 31;158(2):432–435. doi: 10.1016/s0006-291x(89)80065-8. [DOI] [PubMed] [Google Scholar]
- Mellgren R. L., Lu Q. Selective nuclear transport of mu-calpain. Biochem Biophys Res Commun. 1994 Oct 28;204(2):544–550. doi: 10.1006/bbrc.1994.2493. [DOI] [PubMed] [Google Scholar]
- Meyer S. L., Bozyczko-Coyne D., Mallya S. K., Spais C. M., Bihovsky R., Kaywooya J. K., Lang D. M., Scott R. W., Siman R. Biologically active monomeric and heterodimeric recombinant human calpain I produced using the baculovirus expression system. Biochem J. 1996 Mar 1;314(Pt 2):511–519. doi: 10.1042/bj3140511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyers M. B., Pickel V. M., Sheu S. S., Sharma V. K., Scotto K. W., Fishman G. I. Association of sorcin with the cardiac ryanodine receptor. J Biol Chem. 1995 Nov 3;270(44):26411–26418. doi: 10.1074/jbc.270.44.26411. [DOI] [PubMed] [Google Scholar]
- Meyers M. B., Spengler B. A., Chang T. D., Melera P. W., Biedler J. L. Gene amplification-associated cytogenetic aberrations and protein changes in vincristine-resistant Chinese hamster, mouse, and human cells. J Cell Biol. 1985 Feb;100(2):588–597. doi: 10.1083/jcb.100.2.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyers M. B., Zamparelli C., Verzili D., Dicker A. P., Blanck T. J., Chiancone E. Calcium-dependent translocation of sorcin to membranes: functional relevance in contractile tissue. FEBS Lett. 1995 Jan 9;357(3):230–234. doi: 10.1016/0014-5793(94)01338-2. [DOI] [PubMed] [Google Scholar]
- Michetti M., Salamino F., Minafra R., Melloni E., Pontremoli S. Calcium-binding properties of human erythrocyte calpain. Biochem J. 1997 Aug 1;325(Pt 3):721–726. doi: 10.1042/bj3250721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minami Y., Emori Y., Imajoh-Ohmi S., Kawasaki H., Suzuki K. Carboxyl-terminal truncation and site-directed mutagenesis of the EF hand structure-domain of the small subunit of rabbit calcium-dependent protease. J Biochem. 1988 Dec;104(6):927–933. doi: 10.1093/oxfordjournals.jbchem.a122585. [DOI] [PubMed] [Google Scholar]
- Molinari M., Maki M., Carafoli E. Purification of mu-calpain by a novel affinity chromatography approach. New insights into the mechanism of the interaction of the protease with targets. J Biol Chem. 1995 Jun 16;270(24):14576–14581. doi: 10.1074/jbc.270.24.14576. [DOI] [PubMed] [Google Scholar]
- Morimoto T., Ginsberg M. D., Dietrich W. D., Zhao W. Hyperthermia enhances spectrin breakdown in transient focal cerebral ischemia. Brain Res. 1997 Jan 23;746(1-2):43–51. doi: 10.1016/s0006-8993(96)01154-7. [DOI] [PubMed] [Google Scholar]
- Muller D., Molinari I., Soldati L., Bianchi G. A genetic deficiency in calpastatin and isovalerylcarnitine treatment is associated with enhanced hippocampal long-term potentiation. Synapse. 1995 Jan;19(1):37–45. doi: 10.1002/syn.890190106. [DOI] [PubMed] [Google Scholar]
- Murachi T. Intracellular regulatory system involving calpain and calpastatin. Biochem Int. 1989 Feb;18(2):263–294. [PubMed] [Google Scholar]
- Ménard H. A., el-Amine M. The calpain-calpastatin system in rheumatoid arthritis. Immunol Today. 1996 Dec;17(12):545–547. doi: 10.1016/s0167-5699(96)30064-9. [DOI] [PubMed] [Google Scholar]
- Nath R., Raser K. J., McGinnis K., Nadimpalli R., Stafford D., Wang K. K. Effects of ICE-like protease and calpain inhibitors on neuronal apoptosis. Neuroreport. 1996 Dec 20;8(1):249–255. doi: 10.1097/00001756-199612200-00050. [DOI] [PubMed] [Google Scholar]
- Nath R., Raser K. J., Stafford D., Hajimohammadreza I., Posner A., Allen H., Talanian R. V., Yuen P., Gilbertsen R. B., Wang K. K. Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem J. 1996 Nov 1;319(Pt 3):683–690. doi: 10.1042/bj3190683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Negrete-Urtasun S., Denison S. H., Arst H. N., Jr Characterization of the pH signal transduction pathway gene palA of Aspergillus nidulans and identification of possible homologs. J Bacteriol. 1997 Mar;179(5):1832–1835. doi: 10.1128/jb.179.5.1832-1835.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neumar R. W., Hagle S. M., DeGracia D. J., Krause G. S., White B. C. Brain mu-calpain autolysis during global cerebral ischemia. J Neurochem. 1996 Jan;66(1):421–424. doi: 10.1046/j.1471-4159.1996.66010421.x. [DOI] [PubMed] [Google Scholar]
- Nicholson D. W. ICE/CED3-like proteases as therapeutic targets for the control of inappropriate apoptosis. Nat Biotechnol. 1996 Mar;14(3):297–301. doi: 10.1038/nbt0396-297. [DOI] [PubMed] [Google Scholar]
- Nickas M. E., Yaffe M. P. BRO1, a novel gene that interacts with components of the Pkc1p-mitogen-activated protein kinase pathway in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Jun;16(6):2585–2593. doi: 10.1128/mcb.16.6.2585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishimura T., Goll D. E. Binding of calpain fragments to calpastatin. J Biol Chem. 1991 Jun 25;266(18):11842–11850. [PubMed] [Google Scholar]
- Nixon R. A., Saito K. I., Grynspan F., Griffin W. R., Katayama S., Honda T., Mohan P. S., Shea T. B., Beermann M. Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer's disease. Ann N Y Acad Sci. 1994 Dec 15;747:77–91. doi: 10.1111/j.1749-6632.1994.tb44402.x. [DOI] [PubMed] [Google Scholar]
- Ohno S., Emori Y., Imajoh S., Kawasaki H., Kisaragi M., Suzuki K. Evolutionary origin of a calcium-dependent protease by fusion of genes for a thiol protease and a calcium-binding protein? Nature. 1984 Dec 6;312(5994):566–570. doi: 10.1038/312566a0. [DOI] [PubMed] [Google Scholar]
- Ohno S., Emori Y., Suzuki K. Nucleotide sequence of a cDNA coding for the small subunit of human calcium-dependent protease. Nucleic Acids Res. 1986 Jul 11;14(13):5559–5559. [PMC free article] [PubMed] [Google Scholar]
- Pariat M., Carillo S., Molinari M., Salvat C., Debüssche L., Bracco L., Milner J., Piechaczyk M. Proteolysis by calpains: a possible contribution to degradation of p53. Mol Cell Biol. 1997 May;17(5):2806–2815. doi: 10.1128/mcb.17.5.2806. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rao L., White E. Bcl-2 and the ICE family of apoptotic regulators: making a connection. Curr Opin Genet Dev. 1997 Feb;7(1):52–58. doi: 10.1016/s0959-437x(97)80109-8. [DOI] [PubMed] [Google Scholar]
- Richard I., Beckmann J. S. Molecular cloning of mouse canp3, the gene associated with limb-girdle muscular dystrophy 2A in human. Mamm Genome. 1996 May;7(5):377–379. doi: 10.1007/s003359900108. [DOI] [PubMed] [Google Scholar]
- Richard I., Brenguier L., Dinçer P., Roudaut C., Bady B., Burgunder J. M., Chemaly R., Garcia C. A., Halaby G., Jackson C. E. Multiple independent molecular etiology for limb-girdle muscular dystrophy type 2A patients from various geographical origins. Am J Hum Genet. 1997 May;60(5):1128–1138. [PMC free article] [PubMed] [Google Scholar]
- Richard I., Broux O., Allamand V., Fougerousse F., Chiannilkulchai N., Bourg N., Brenguier L., Devaud C., Pasturaud P., Roudaut C. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell. 1995 Apr 7;81(1):27–40. doi: 10.1016/0092-8674(95)90368-2. [DOI] [PubMed] [Google Scholar]
- Roberts-Lewis J. M., Marcy V. R., Zhao Y., Vaught J. L., Siman R., Lewis M. E. Aurintricarboxylic acid protects hippocampal neurons from NMDA- and ischemia-induced toxicity in vivo. J Neurochem. 1993 Jul;61(1):378–381. doi: 10.1111/j.1471-4159.1993.tb03583.x. [DOI] [PubMed] [Google Scholar]
- Saatman K. E., Bozyczko-Coyne D., Marcy V., Siman R., McIntosh T. K. Prolonged calpain-mediated spectrin breakdown occurs regionally following experimental brain injury in the rat. J Neuropathol Exp Neurol. 1996 Jul;55(7):850–860. doi: 10.1097/00005072-199607000-00010. [DOI] [PubMed] [Google Scholar]
- Saatman K. E., Murai H., Bartus R. T., Smith D. H., Hayward N. J., Perri B. R., McIntosh T. K. Calpain inhibitor AK295 attenuates motor and cognitive deficits following experimental brain injury in the rat. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3428–3433. doi: 10.1073/pnas.93.8.3428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saido T. C., Iwatsubo T., Mann D. M., Shimada H., Ihara Y., Kawashima S. Dominant and differential deposition of distinct beta-amyloid peptide species, A beta N3(pE), in senile plaques. Neuron. 1995 Feb;14(2):457–466. doi: 10.1016/0896-6273(95)90301-1. [DOI] [PubMed] [Google Scholar]
- Saido T. C., Nagao S., Shiramine M., Tsukaguchi M., Sorimachi H., Murofushi H., Tsuchiya T., Ito H., Suzuki K. Autolytic transition of mu-calpain upon activation as resolved by antibodies distinguishing between the pre- and post-autolysis forms. J Biochem. 1992 Jan;111(1):81–86. doi: 10.1093/oxfordjournals.jbchem.a123723. [DOI] [PubMed] [Google Scholar]
- Saido T. C., Sorimachi H., Suzuki K. Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J. 1994 Aug;8(11):814–822. [PubMed] [Google Scholar]
- Saido T. C., Suzuki H., Yamazaki H., Tanoue K., Suzuki K. In situ capture of mu-calpain activation in platelets. J Biol Chem. 1993 Apr 5;268(10):7422–7426. [PubMed] [Google Scholar]
- Saido T. C., Yokota M., Nagao S., Yamaura I., Tani E., Tsuchiya T., Suzuki K., Kawashima S. Spatial resolution of fodrin proteolysis in postischemic brain. J Biol Chem. 1993 Nov 25;268(33):25239–25243. [PubMed] [Google Scholar]
- Saido T. C. [Spatial resolution of proteolytic reactions in brain ischemia and Alzheimer's disease]. Seikagaku. 1996 Sep;68(9):1507–1522. [PubMed] [Google Scholar]
- Saito K., Elce J. S., Hamos J. E., Nixon R. A. Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2628–2632. doi: 10.1073/pnas.90.7.2628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakihama T., Kakidani H., Zenita K., Yumoto N., Kikuchi T., Sasaki T., Kannagi R., Nakanishi S., Ohmori M., Takio K. A putative Ca2+-binding protein: structure of the light subunit of porcine calpain elucidated by molecular cloning and protein sequence analysis. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6075–6079. doi: 10.1073/pnas.82.18.6075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salamino F., De Tullio R., Mengotti P., Viotti P. L., Melloni E., Pontremoli S. Site-directed activation of calpain is promoted by a membrane-associated natural activator protein. Biochem J. 1993 Feb 15;290(Pt 1):191–197. doi: 10.1042/bj2900191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarin A., Adams D. H., Henkart P. A. Protease inhibitors selectively block T cell receptor-triggered programmed cell death in a murine T cell hybridoma and activated peripheral T cells. J Exp Med. 1993 Nov 1;178(5):1693–1700. doi: 10.1084/jem.178.5.1693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheffner M., Huibregtse J. M., Vierstra R. D., Howley P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell. 1993 Nov 5;75(3):495–505. doi: 10.1016/0092-8674(93)90384-3. [DOI] [PubMed] [Google Scholar]
- Seubert P., Lee K., Lynch G. Ischemia triggers NMDA receptor-linked cytoskeletal proteolysis in hippocampus. Brain Res. 1989 Jul 17;492(1-2):366–370. doi: 10.1016/0006-8993(89)90921-9. [DOI] [PubMed] [Google Scholar]
- Siman R., Bozyczko-Coyne D., Savage M. J., Roberts-Lewis J. M. The calcium-activated protease calpain I and ischemia-induced neurodegeneration. Adv Neurol. 1996;71:167–175. [PubMed] [Google Scholar]
- Sorimachi H., Amano S., Ishiura S., Suzuki K. Primary sequences of rat mu-calpain large and small subunits are, respectively, moderately and highly similar to those of human. Biochim Biophys Acta. 1996 Nov 11;1309(1-2):37–41. doi: 10.1016/s0167-4781(96)00135-2. [DOI] [PubMed] [Google Scholar]
- Sorimachi H., Forsberg N. E., Lee H. J., Joeng S. Y., Richard I., Beckmann J. S., Ishiura S., Suzuki K. Highly conserved structure in the promoter region of the gene for muscle-specific calpain, p94. Biol Chem. 1996 Dec;377(12):859–864. [PubMed] [Google Scholar]
- Sorimachi H., Imajoh-Ohmi S., Emori Y., Kawasaki H., Ohno S., Minami Y., Suzuki K. Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m- and mu-types. Specific expression of the mRNA in skeletal muscle. J Biol Chem. 1989 Nov 25;264(33):20106–20111. [PubMed] [Google Scholar]
- Sorimachi H., Ishiura S., Suzuki K. A novel tissue-specific calpain species expressed predominantly in the stomach comprises two alternative splicing products with and without Ca(2+)-binding domain. J Biol Chem. 1993 Sep 15;268(26):19476–19482. [PubMed] [Google Scholar]
- Sorimachi H., Kimura S., Kinbara K., Kazama J., Takahashi M., Yajima H., Ishiura S., Sasagawa N., Nonaka I., Sugita H. Structure and physiological functions of ubiquitous and tissue-specific calpain species. Muscle-specific calpain, p94, interacts with connectin/titin. Adv Biophys. 1996;33:101–122. doi: 10.1016/s0065-227x(96)90026-x. [DOI] [PubMed] [Google Scholar]
- Sorimachi H., Kinbara K., Kimura S., Takahashi M., Ishiura S., Sasagawa N., Sorimachi N., Shimada H., Tagawa K., Maruyama K. Muscle-specific calpain, p94, responsible for limb girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence. J Biol Chem. 1995 Dec 29;270(52):31158–31162. doi: 10.1074/jbc.270.52.31158. [DOI] [PubMed] [Google Scholar]
- Sorimachi H., Ohmi S., Emori Y., Kawasaki H., Saido T. C., Ohno S., Minami Y., Suzuki K. A novel member of the calcium-dependent cysteine protease family. Biol Chem Hoppe Seyler. 1990 May;371 (Suppl):171–176. [PubMed] [Google Scholar]
- Sorimachi H., Saido T. C., Suzuki K. New era of calpain research. Discovery of tissue-specific calpains. FEBS Lett. 1994 Apr 18;343(1):1–5. doi: 10.1016/0014-5793(94)80595-4. [DOI] [PubMed] [Google Scholar]
- Sorimachi H., Suzuki K. Sequence comparison among muscle-specific calpain, p94, and calpain subunits. Biochim Biophys Acta. 1992 Nov 10;1160(1):55–62. doi: 10.1016/0167-4838(92)90037-e. [DOI] [PubMed] [Google Scholar]
- Sorimachi H., Toyama-Sorimachi N., Saido T. C., Kawasaki H., Sugita H., Miyasaka M., Arahata K., Ishiura S., Suzuki K. Muscle-specific calpain, p94, is degraded by autolysis immediately after translation, resulting in disappearance from muscle. J Biol Chem. 1993 May 15;268(14):10593–10605. [PubMed] [Google Scholar]
- Sorimachi H., Tsukahara T., Okada-Ban M., Sugita H., Ishiura S., Suzuki K. Identification of a third ubiquitous calpain species--chicken muscle expresses four distinct calpains. Biochim Biophys Acta. 1995 Apr 26;1261(3):381–393. doi: 10.1016/0167-4781(95)00027-e. [DOI] [PubMed] [Google Scholar]
- Spence A. M., Coulson A., Hodgkin J. The product of fem-1, a nematode sex-determining gene, contains a motif found in cell cycle control proteins and receptors for cell-cell interactions. Cell. 1990 Mar 23;60(6):981–990. doi: 10.1016/0092-8674(90)90346-g. [DOI] [PubMed] [Google Scholar]
- Spencer M. J., Tidball J. G., Anderson L. V., Bushby K. M., Harris J. B., Passos-Bueno M. R., Somer H., Vainzof M., Zatz M. Absence of calpain 3 in a form of limb-girdle muscular dystrophy (LGMD2A). J Neurol Sci. 1997 Mar 10;146(2):173–178. doi: 10.1016/s0022-510x(96)00304-8. [DOI] [PubMed] [Google Scholar]
- Squier M. K., Cohen J. J. Calpain, an upstream regulator of thymocyte apoptosis. J Immunol. 1997 Apr 15;158(8):3690–3697. [PubMed] [Google Scholar]
- Stabach P. R., Cianci C. D., Glantz S. B., Zhang Z., Morrow J. S. Site-directed mutagenesis of alpha II spectrin at codon 1175 modulates its mu-calpain susceptibility. Biochemistry. 1997 Jan 7;36(1):57–65. doi: 10.1021/bi962034i. [DOI] [PubMed] [Google Scholar]
- Sugita H., Ishiura S., Suzuki K., Imahori K. Inhibition of epoxide derivatives on chicken calcium-activated neutral protease (CANP) in vitro and in vivo. J Biochem. 1980 Jan;87(1):339–341. doi: 10.1093/oxfordjournals.jbchem.a132742. [DOI] [PubMed] [Google Scholar]
- Sun W., Ji S. Q., Ebert P. J., Bidwell C. A., Hancock D. L. Cloning the partial cDNAs of mu-calpain and m-calpain from porcine skeletal muscle. Biochimie. 1993;75(10):931–936. doi: 10.1016/0300-9084(93)90051-s. [DOI] [PubMed] [Google Scholar]
- Suzuki K., Ishiura S. Effect of metal ions on the structure and activity of calcium-activated neutral protease (CANP). J Biochem. 1983 Jun;93(6):1463–1471. doi: 10.1093/oxfordjournals.jbchem.a134284. [DOI] [PubMed] [Google Scholar]
- Suzuki K. Nomenclature of calcium dependent proteinase. Biomed Biochim Acta. 1991;50(4-6):483–484. [PubMed] [Google Scholar]
- Suzuki K., Sorimachi H., Yoshizawa T., Kinbara K., Ishiura S. Calpain: novel family members, activation, and physiologic function. Biol Chem Hoppe Seyler. 1995 Sep;376(9):523–529. doi: 10.1515/bchm3.1995.376.9.523. [DOI] [PubMed] [Google Scholar]
- Suzuki K., Tsuji S., Ishiura S. Effect of Ca2+ on the inhibition of calcium-activated neutral protease by leupeptin, antipain and epoxysuccinate derivatives. FEBS Lett. 1981 Dec 21;136(1):119–122. doi: 10.1016/0014-5793(81)81227-6. [DOI] [PubMed] [Google Scholar]
- Suzuki T., Okumura-Noji K., Ogura A., Tanaka R., Nakamura K., Kudo Y. Calpain may produce a Ca(2+)-independent form of kinase C in long-term potentiation. Biochem Biophys Res Commun. 1992 Dec 30;189(3):1515–1520. doi: 10.1016/0006-291x(92)90247-i. [DOI] [PubMed] [Google Scholar]
- Takai Y., Yamamoto M., Inoue M., Kishimoto A., Nishizuka Y. A proenzyme of cyclic nucleotide-independent protein kinase and its activation by calcium-dependent neutral protease from rat liver. Biochem Biophys Res Commun. 1977 Jul 25;77(2):542–550. doi: 10.1016/s0006-291x(77)80013-2. [DOI] [PubMed] [Google Scholar]
- Takano E., Ma H., Yang H. Q., Maki M., Hatanaka M. Preference of calcium-dependent interactions between calmodulin-like domains of calpain and calpastatin subdomains. FEBS Lett. 1995 Mar 27;362(1):93–97. doi: 10.1016/0014-5793(95)00219-y. [DOI] [PubMed] [Google Scholar]
- Takano E., Maki M., Hatanaka M., Mori H., Zenita K., Sakihama T., Kannagi R., Marti T., Titani K., Murachi T. Evidence for the repetitive domain structure of pig calpastatin as demonstrated by cloning of complementary DNA. FEBS Lett. 1986 Nov 24;208(2):199–202. doi: 10.1016/0014-5793(86)81017-1. [DOI] [PubMed] [Google Scholar]
- Takano E., Maki M., Mori H., Hatanaka M., Marti T., Titani K., Kannagi R., Ooi T., Murachi T. Pig heart calpastatin: identification of repetitive domain structures and anomalous behavior in polyacrylamide gel electrophoresis. Biochemistry. 1988 Mar 22;27(6):1964–1972. doi: 10.1021/bi00406a024. [DOI] [PubMed] [Google Scholar]
- Teahan C. G., Totty N. F., Segal A. W. Isolation and characterization of grancalcin, a novel 28 kDa EF-hand calcium-binding protein from human neutrophils. Biochem J. 1992 Sep 1;286(Pt 2):549–554. doi: 10.1042/bj2860549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tettelin H., Agostoni Carbone M. L., Albermann K., Albers M., Arroyo J., Backes U., Barreiros T., Bertani I., Bjourson A. J., Brückner M. The nucleotide sequence of Saccharomyces cerevisiae chromosome VII. Nature. 1997 May 29;387(6632 Suppl):81–84. [PubMed] [Google Scholar]
- Theopold U., Pintér M., Daffre S., Tryselius Y., Friedrich P., Nässel D. R., Hultmark D. CalpA, a Drosophila calpain homolog specifically expressed in a small set of nerve, midgut, and blood cells. Mol Cell Biol. 1995 Feb;15(2):824–834. doi: 10.1128/mcb.15.2.824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilburn J., Sarkar S., Widdick D. A., Espeso E. A., Orejas M., Mungroo J., Peñalva M. A., Arst H. N., Jr The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J. 1995 Feb 15;14(4):779–790. doi: 10.1002/j.1460-2075.1995.tb07056.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tompa P., Baki A., Schád E., Friedrich P. The calpain cascade. Mu-calpain activates m-calpain. J Biol Chem. 1996 Dec 27;271(52):33161–33164. doi: 10.1074/jbc.271.52.33161. [DOI] [PubMed] [Google Scholar]
- Tsubuki S., Saito Y., Tomioka M., Ito H., Kawashima S. Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine. J Biochem. 1996 Mar;119(3):572–576. doi: 10.1093/oxfordjournals.jbchem.a021280. [DOI] [PubMed] [Google Scholar]
- Tsuji S., Imahori K. Studies on the Ca2+-activated neutral proteinase of rabbit skeletal muscle. I. The characterization of the 80 K and the 30 K subunits. J Biochem. 1981 Jul;90(1):233–240. doi: 10.1093/oxfordjournals.jbchem.a133455. [DOI] [PubMed] [Google Scholar]
- Tsujinaka T., Fujita J., Ebisui C., Yano M., Kominami E., Suzuki K., Tanaka K., Katsume A., Ohsugi Y., Shiozaki H. Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice. J Clin Invest. 1996 Jan 1;97(1):244–249. doi: 10.1172/JCI118398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uemori T., Shimojo T., Asada K., Asano T., Kimizuka F., Kato I., Maki M., Hatanaka M., Murachi T., Hanzawa H. Characterization of a functional domain of human calpastatin. Biochem Biophys Res Commun. 1990 Feb 14;166(3):1485–1493. doi: 10.1016/0006-291x(90)91035-q. [DOI] [PubMed] [Google Scholar]
- Vanags D. M., Pörn-Ares M. I., Coppola S., Burgess D. H., Orrenius S. Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J Biol Chem. 1996 Dec 6;271(49):31075–31085. doi: 10.1074/jbc.271.49.31075. [DOI] [PubMed] [Google Scholar]
- Vito P., Lacanà E., D'Adamio L. Interfering with apoptosis: Ca(2+)-binding protein ALG-2 and Alzheimer's disease gene ALG-3. Science. 1996 Jan 26;271(5248):521–525. doi: 10.1126/science.271.5248.521. [DOI] [PubMed] [Google Scholar]
- Wagner A. J., Kokontis J. M., Hay N. Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev. 1994 Dec 1;8(23):2817–2830. doi: 10.1101/gad.8.23.2817. [DOI] [PubMed] [Google Scholar]
- Wang K. K. Developing selective inhibitors of calpain. Trends Pharmacol Sci. 1990 Apr;11(4):139–142. doi: 10.1016/0165-6147(90)90060-L. [DOI] [PubMed] [Google Scholar]
- Wang K. K., Nath R., Posner A., Raser K. J., Buroker-Kilgore M., Hajimohammadreza I., Probert A W., Jr, Marcoux F. W., Ye Q., Takano E. An alpha-mercaptoacrylic acid derivative is a selective nonpeptide cell-permeable calpain inhibitor and is neuroprotective. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6687–6692. doi: 10.1073/pnas.93.13.6687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang K. K., Yuen P. W. Development and therapeutic potential of calpain inhibitors. Adv Pharmacol. 1997;37:117–152. doi: 10.1016/s1054-3589(08)60949-7. [DOI] [PubMed] [Google Scholar]
- Waterston R., Martin C., Craxton M., Huynh C., Coulson A., Hillier L., Durbin R., Green P., Shownkeen R., Halloran N. A survey of expressed genes in Caenorhabditis elegans. Nat Genet. 1992 May;1(2):114–123. doi: 10.1038/ng0592-114. [DOI] [PubMed] [Google Scholar]
- White E. Life, death, and the pursuit of apoptosis. Genes Dev. 1996 Jan 1;10(1):1–15. doi: 10.1101/gad.10.1.1. [DOI] [PubMed] [Google Scholar]
- Wilson R., Ainscough R., Anderson K., Baynes C., Berks M., Bonfield J., Burton J., Connell M., Copsey T., Cooper J. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature. 1994 Mar 3;368(6466):32–38. doi: 10.1038/368032a0. [DOI] [PubMed] [Google Scholar]
- Yang H. Q., Ma H., Takano E., Hatanaka M., Maki M. Analysis of calcium-dependent interaction between amino-terminal conserved region of calpastatin functional domain and calmodulin-like domain of mu-calpain large subunit. J Biol Chem. 1994 Jul 22;269(29):18977–18984. [PubMed] [Google Scholar]
- Yokota M., Saido T. C., Tani E., Kawashima S., Suzuki K. Three distinct phases of fodrin proteolysis induced in postischemic hippocampus. Involvement of calpain and unidentified protease. Stroke. 1995 Oct;26(10):1901–1907. doi: 10.1161/01.str.26.10.1901. [DOI] [PubMed] [Google Scholar]
- Yoshida K., Hirata T., Akita Y., Mizukami Y., Yamaguchi K., Sorimachi Y., Ishihara T., Kawashiama S. Translocation of protein kinase C-alpha, delta and epsilon isoforms in ischemic rat heart. Biochim Biophys Acta. 1996 Oct 7;1317(1):36–44. doi: 10.1016/0925-4439(96)00035-x. [DOI] [PubMed] [Google Scholar]
- Yoshizawa T., Sorimachi H., Tomioka S., Ishiura S., Suzuki K. A catalytic subunit of calpain possesses full proteolytic activity. FEBS Lett. 1995 Jan 16;358(1):101–103. doi: 10.1016/0014-5793(94)01401-l. [DOI] [PubMed] [Google Scholar]
- Yoshizawa T., Sorimachi H., Tomioka S., Ishiura S., Suzuki K. Calpain dissociates into subunits in the presence of calcium ions. Biochem Biophys Res Commun. 1995 Mar 8;208(1):376–383. doi: 10.1006/bbrc.1995.1348. [DOI] [PubMed] [Google Scholar]
- Yuan J., Shaham S., Ledoux S., Ellis H. M., Horvitz H. R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell. 1993 Nov 19;75(4):641–652. doi: 10.1016/0092-8674(93)90485-9. [DOI] [PubMed] [Google Scholar]
- Zhang W., Lu Q., Xie Z. J., Mellgren R. L. Inhibition of the growth of WI-38 fibroblasts by benzyloxycarbonyl-Leu-Leu-Tyr diazomethyl ketone: evidence that cleavage of p53 by a calpain-like protease is necessary for G1 to S-phase transition. Oncogene. 1997 Jan 23;14(3):255–263. doi: 10.1038/sj.onc.1200841. [DOI] [PubMed] [Google Scholar]
- Zhang W., Mellgren R. L. Calpain subunits remain associated during catalysis. Biochem Biophys Res Commun. 1996 Oct 23;227(3):891–896. [PubMed] [Google Scholar]