Effect of overexpression of Saccharomyces cerevisiae Pad1p on the resistance to phenylacrylic acids and lignocellulose hydrolysates under aerobic and oxygen-limited conditions - PubMed
. 2001 Oct;57(1-2):167-74.
doi: 10.1007/s002530100742.
Affiliations
- PMID: 11693915
- DOI: 10.1007/s002530100742
Effect of overexpression of Saccharomyces cerevisiae Pad1p on the resistance to phenylacrylic acids and lignocellulose hydrolysates under aerobic and oxygen-limited conditions
S Larsson et al. Appl Microbiol Biotechnol. 2001 Oct.
Abstract
Lignocellulose hydrolysates, obtained by acid hydrolysis for production of bioethanol, contain, in addition to fermentable sugars, compounds that inhibit the fermenting micro-organism. One approach to alleviate the inhibition problem is to use genetic engineering to introduce increased tolerance. Phenylacrylic acid decarboxylase (Pad1p) catalyses a decarboxylation step, by which aromatic carboxylic acids are converted to the corresponding vinyl derivatives. Pad1p-overexpressing Saccharomyces cerevisiae was cultivated in synthetic medium in the presence of model compounds, ferulic acid [(2 E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid] and cinnamic acid [(2 E)-3-phenylprop-2-enoic acid], as well as in a dilute acid hydrolysate of spruce to examine the resistance against fermentation inhibitors. Overexpression of S. cerevisiae phenylacrylic acid decarboxylase (Pad1p) resulted in an improved growth rate and ethanol productivity in the presence of ferulic acid, cinnamic acid, and in a dilute acid hydrolysate of spruce. Vinyl guaiacol (2-methoxy-4-vinylphenol) was identified as a major metabolite of ferulic acid, and dihydroferulic acid [3-(4-hydroxy-3-methoxyphenyl)propanoic acid] was detected under oxygen-limited conditions. Styrene (vinylbenzene) and dihydrocinnamic acid (3-phenylpropanoic acid) were identified as metabolites of cinnamic acid. Transformants overexpressing Pad1p had the ability to convert ferulic and cinnamic acid at a faster rate than a control transformant (PAD(C)) not overexpressing Pad1p. This enabled faster growth for Pad1p-overexpressing transformants under both aerobic and oxygen-limited conditions. Pad1p activity was also studied using non-growing cells. The overexpressing transformants showed approximately tenfold higher activity than PAD(C). The Pad1p overexpressing transformants also showed a 22-25% faster glucose consumption rate, a 40-45% faster mannose consumption rate, and a 24-29% faster ethanol production rate in the dilute acid hydrolysate of spruce.
Similar articles
-
Mukai N, Masaki K, Fujii T, Kawamukai M, Iefuji H. Mukai N, et al. J Biosci Bioeng. 2010 Jun;109(6):564-9. doi: 10.1016/j.jbiosc.2009.11.011. Epub 2009 Dec 16. J Biosci Bioeng. 2010. PMID: 20471595
-
Larsson S, Cassland P, Jönsson LJ. Larsson S, et al. Appl Environ Microbiol. 2001 Mar;67(3):1163-70. doi: 10.1128/AEM.67.3.1163-1170.2001. Appl Environ Microbiol. 2001. PMID: 11229906 Free PMC article.
-
Chemical genomic guided engineering of gamma-valerolactone tolerant yeast.
Bottoms S, Dickinson Q, McGee M, Hinchman L, Higbee A, Hebert A, Serate J, Xie D, Zhang Y, Coon JJ, Myers CL, Landick R, Piotrowski JS. Bottoms S, et al. Microb Cell Fact. 2018 Jan 12;17(1):5. doi: 10.1186/s12934-017-0848-9. Microb Cell Fact. 2018. PMID: 29329531 Free PMC article.
-
Parawira W, Tekere M. Parawira W, et al. Crit Rev Biotechnol. 2011 Mar;31(1):20-31. doi: 10.3109/07388551003757816. Epub 2010 May 31. Crit Rev Biotechnol. 2011. PMID: 20513164 Review.
-
Li H, Zhang X, Shen Y, Dong Y, Bao X. Li H, et al. Sheng Wu Gong Cheng Xue Bao. 2009 Sep;25(9):1321-8. Sheng Wu Gong Cheng Xue Bao. 2009. PMID: 19938474 Review. Chinese.
Cited by
-
Ruchala J, Kurylenko OO, Dmytruk KV, Sibirny AA. Ruchala J, et al. J Ind Microbiol Biotechnol. 2020 Jan;47(1):109-132. doi: 10.1007/s10295-019-02242-x. Epub 2019 Oct 21. J Ind Microbiol Biotechnol. 2020. PMID: 31637550 Free PMC article. Review.
-
Diderich JA, Weening SM, van den Broek M, Pronk JT, Daran JG. Diderich JA, et al. Front Microbiol. 2018 Jul 27;9:1640. doi: 10.3389/fmicb.2018.01640. eCollection 2018. Front Microbiol. 2018. PMID: 30100898 Free PMC article.
-
Kim IS, Kim YS, Kim YH, Park AK, Kim HW, Lee JH, Yoon HS. Kim IS, et al. PLoS One. 2016 Jul 8;11(7):e0158841. doi: 10.1371/journal.pone.0158841. eCollection 2016. PLoS One. 2016. PMID: 27392090 Free PMC article.
-
Sato TK, Liu T, Parreiras LS, Williams DL, Wohlbach DJ, Bice BD, Ong IM, Breuer RJ, Qin L, Busalacchi D, Deshpande S, Daum C, Gasch AP, Hodge DB. Sato TK, et al. Appl Environ Microbiol. 2014 Jan;80(2):540-54. doi: 10.1128/AEM.01885-13. Epub 2013 Nov 8. Appl Environ Microbiol. 2014. PMID: 24212571 Free PMC article.
-
Bioconversion of lignocellulose: inhibitors and detoxification.
Jönsson LJ, Alriksson B, Nilvebrant NO. Jönsson LJ, et al. Biotechnol Biofuels. 2013 Jan 28;6(1):16. doi: 10.1186/1754-6834-6-16. Biotechnol Biofuels. 2013. PMID: 23356676 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases