Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure - PubMed
- ️Thu Jan 01 2004
Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure
David H Mathews et al. Proc Natl Acad Sci U S A. 2004.
Abstract
A dynamic programming algorithm for prediction of RNA secondary structure has been revised to accommodate folding constraints determined by chemical modification and to include free energy increments for coaxial stacking of helices when they are either adjacent or separated by a single mismatch. Furthermore, free energy parameters are revised to account for recent experimental results for terminal mismatches and hairpin, bulge, internal, and multibranch loops. To demonstrate the applicability of this method, in vivo modification was performed on 5S rRNA in both Escherichia coli and Candida albicans with 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate, dimethyl sulfate, and kethoxal. The percentage of known base pairs in the predicted structure increased from 26.3% to 86.8% for the E. coli sequence by using modification constraints. For C. albicans, the accuracy remained 87.5% both with and without modification data. On average, for these sequences and a set of 14 sequences with known secondary structure and chemical modification data taken from the literature, accuracy improves from 67% to 76%. This enhancement primarily reflects improvement for three sequences that are predicted with <40% accuracy on the basis of energetics alone. For these sequences, inclusion of chemical modification constraints improves the average accuracy from 28% to 78%. For the 11 sequences with <6% pseudoknotted base pairs, structures predicted with constraints from chemical modification contain on average 84% of known canonical base pairs.
Figures

The E. coli 5S rRNA secondary structure predictions and chemical modification. Heavy lines indicate base pairs in the known secondary structure (76, 88). (A) The predicted lowest free energy structure without experimental constraints. (B) The structure predicted with constraints from chemical modification data specified.
Similar articles
-
Mathews DH, Sabina J, Zuker M, Turner DH. Mathews DH, et al. J Mol Biol. 1999 May 21;288(5):911-40. doi: 10.1006/jmbi.1999.2700. J Mol Biol. 1999. PMID: 10329189
-
Doshi KJ, Cannone JJ, Cobaugh CW, Gutell RR. Doshi KJ, et al. BMC Bioinformatics. 2004 Aug 5;5:105. doi: 10.1186/1471-2105-5-105. BMC Bioinformatics. 2004. PMID: 15296519 Free PMC article.
-
Gaspin C, Westhof E. Gaspin C, et al. J Mol Biol. 1995 Nov 24;254(2):163-74. doi: 10.1006/jmbi.1995.0608. J Mol Biol. 1995. PMID: 7490740
-
Sloma MF, Mathews DH. Sloma MF, et al. RNA. 2016 Dec;22(12):1808-1818. doi: 10.1261/rna.053694.115. Epub 2016 Oct 19. RNA. 2016. PMID: 27852924 Free PMC article.
-
On finding all suboptimal foldings of an RNA molecule.
Zuker M. Zuker M. Science. 1989 Apr 7;244(4900):48-52. doi: 10.1126/science.2468181. Science. 1989. PMID: 2468181 Review.
Cited by
-
DecoyFinder: Identification of Contaminants in Sets of Homologous RNA Sequences.
Zhu M, Zuber J, Tan Z, Sharma G, Mathews DH. Zhu M, et al. bioRxiv [Preprint]. 2024 Oct 15:2024.10.12.618037. doi: 10.1101/2024.10.12.618037. bioRxiv. 2024. PMID: 39464058 Free PMC article. Preprint.
-
Mlýnský V, Kührová P, Stadlbauer P, Krepl M, Otyepka M, Banáš P, Šponer J. Mlýnský V, et al. J Chem Theory Comput. 2023 Nov 28;19(22):8423-8433. doi: 10.1021/acs.jctc.3c00990. Epub 2023 Nov 9. J Chem Theory Comput. 2023. PMID: 37944118 Free PMC article.
-
RNAsnp: efficient detection of local RNA secondary structure changes induced by SNPs.
Sabarinathan R, Tafer H, Seemann SE, Hofacker IL, Stadler PF, Gorodkin J. Sabarinathan R, et al. Hum Mutat. 2013 Apr;34(4):546-56. doi: 10.1002/humu.22273. Hum Mutat. 2013. PMID: 23315997 Free PMC article.
-
Wu M, Jin F, Zhang J, Yang L, Jiang D, Li G. Wu M, et al. J Virol. 2012 Jun;86(12):6605-19. doi: 10.1128/JVI.00292-12. Epub 2012 Apr 11. J Virol. 2012. PMID: 22496220 Free PMC article.
-
HiPR: High-throughput probabilistic RNA structure inference.
Kuksa PP, Li F, Kannan S, Gregory BD, Leung YY, Wang LS. Kuksa PP, et al. Comput Struct Biotechnol J. 2020 Jun 8;18:1539-1547. doi: 10.1016/j.csbj.2020.06.004. eCollection 2020. Comput Struct Biotechnol J. 2020. PMID: 32637050 Free PMC article.
References
-
- Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. (2001) Science 294, 853-858. - PubMed
-
- Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. (2001) Science 294, 858-862. - PubMed
-
- Cullen, B. R. (2002) Nat. Immunol. 3, 597-599. - PubMed
-
- McManus, M. T. & Sharp, P. A. (2002) Nat. Rev. Genet. 3, 737-747. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources