Spatiotemporal expression control correlates with intragenic scaffold matrix attachment regions (S/MARs) in Arabidopsis thaliana - PubMed
Review
Spatiotemporal expression control correlates with intragenic scaffold matrix attachment regions (S/MARs) in Arabidopsis thaliana
Igor V Tetko et al. PLoS Comput Biol. 2006 Mar.
Erratum in
- PLoS Comput Biol. 2006 Jun 30;2(6):e67
Abstract
Scaffold/matrix attachment regions (S/MARs) are essential for structural organization of the chromatin within the nucleus and serve as anchors of chromatin loop domains. A significant fraction of genes in Arabidopsis thaliana contains intragenic S/MAR elements and a significant correlation of S/MAR presence and overall expression strength has been demonstrated. In this study, we undertook a genome scale analysis of expression level and spatiotemporal expression differences in correlation with the presence or absence of genic S/MAR elements. We demonstrate that genes containing intragenic S/MARs are prone to pronounced spatiotemporal expression regulation. This characteristic is found to be even more pronounced for transcription factor genes. Our observations illustrate the importance of S/MARs in transcriptional regulation and the role of chromatin structural characteristics for gene regulation. Our findings open new perspectives for the understanding of tissue- and organ-specific regulation of gene expression.
Conflict of interest statement
Competing interests. The authors have declared that no competing interests exist.
Figures
![Figure 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01d6/1420657/8e6d2d780b99/pcbi.0020021.g001.gif)
MPSS data recorded in five different organs are shown (Table 1, dataset 1) (A); for Affymetrix-based measurements (B–D), median values for five root tissues (Table 1, dataset 2) (B), ten organs (Table 1, dataset 4) (C), and five flower tissues (Table 1, dataset 6) (D) are given. For MPSS-based experiments (A), tpm are indicated; for experiments based on the Affymetrix platform (B–D), Affymetrix expression values are plotted. The 5% confidence intervals calculated using bootstrap set for all values are shown.
![Figure 2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01d6/1420657/673a2b5cf76d/pcbi.0020021.g002.gif)
(A) DEXP for MPSS data recorded in five different organs (Table 1, dataset 1). (B) DEXP for five root tissues (Table 1, dataset 2). (C) DEXP for ten organs (Table 1, dataset 4). (D) DEXP for five flower tissues (Table 1, dataset 6). There are different scales for different experiments. The 5% confidence intervals are shown as error bars.
![Figure 3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01d6/1420657/7fa7dfbd821c/pcbi.0020021.g003.gif)
The median expression values and the DEXP values for three different developmental stages of the root (A and C) and four developmental stages of the flower (B and D) are given. The respective stage classifier is given on the x-axis. The differences in DEXP values of S/MAR+ and S/MAR− genes decrease with the increasing age of the tissues. The 5% confidence intervals for all values are shown.
![Figure 4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01d6/1420657/0202b6683f42/pcbi.0020021.g004.gif)
The 5% confidence intervals for all values are shown.
![Figure 5](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01d6/1420657/f2af9f544de8/pcbi.0020021.g005.gif)
The 5% confidence intervals are shown.
Similar articles
-
Rudd S, Frisch M, Grote K, Meyers BC, Mayer K, Werner T. Rudd S, et al. Plant Physiol. 2004 Jun;135(2):715-22. doi: 10.1104/pp.103.037861. Plant Physiol. 2004. PMID: 15208419 Free PMC article.
-
van Drunen CM, Oosterling RW, Keultjes GM, Weisbeek PJ, van Driel R, Smeekens SC. van Drunen CM, et al. Nucleic Acids Res. 1997 Oct 1;25(19):3904-11. doi: 10.1093/nar/25.19.3904. Nucleic Acids Res. 1997. PMID: 9380515 Free PMC article.
-
Pascuzzi PE, Flores-Vergara MA, Lee TJ, Sosinski B, Vaughn MW, Hanley-Bowdoin L, Thompson WF, Allen GC. Pascuzzi PE, et al. Plant Cell. 2014 Jan;26(1):102-20. doi: 10.1105/tpc.113.121194. Epub 2014 Jan 31. Plant Cell. 2014. PMID: 24488963 Free PMC article.
-
[The potential role of nuclear matrix attachment regions (MARs) in regulation of gene expression].
Zhang KW, Wang JM, Zheng CC. Zhang KW, et al. Sheng Wu Gong Cheng Xue Bao. 2004 Jan;20(1):6-9. Sheng Wu Gong Cheng Xue Bao. 2004. PMID: 16108480 Review. Chinese.
-
MARs and MARBPs: key modulators of gene regulation and disease manifestation.
Chattopadhyay S, Pavithra L. Chattopadhyay S, et al. Subcell Biochem. 2007;41:213-30. Subcell Biochem. 2007. PMID: 17484130 Review.
Cited by
-
Chromatin attachment to the nuclear matrix represses hypocotyl elongation in Arabidopsis thaliana.
Xu L, Zheng S, Witzel K, Van De Slijke E, Baekelandt A, Mylle E, Van Damme D, Cheng J, De Jaeger G, Inzé D, Jiang H. Xu L, et al. Nat Commun. 2024 Feb 12;15(1):1286. doi: 10.1038/s41467-024-45577-5. Nat Commun. 2024. PMID: 38346986 Free PMC article.
-
A genome-wide transcriptional activity survey of rice transposable element-related genes.
Jiao Y, Deng XW. Jiao Y, et al. Genome Biol. 2007;8(2):R28. doi: 10.1186/gb-2007-8-2-r28. Genome Biol. 2007. PMID: 17326825 Free PMC article.
-
Jin Y, Liu Z, Cao W, Ma X, Fan Y, Yu Y, Bai J, Chen F, Rosales J, Lee KY, Fu S. Jin Y, et al. PLoS One. 2012;7(2):e30419. doi: 10.1371/journal.pone.0030419. Epub 2012 Feb 3. PLoS One. 2012. PMID: 22319568 Free PMC article.
-
Yun J, Kim YS, Jung JH, Seo PJ, Park CM. Yun J, et al. J Biol Chem. 2012 May 4;287(19):15307-16. doi: 10.1074/jbc.M111.318477. Epub 2012 Mar 22. J Biol Chem. 2012. PMID: 22442143 Free PMC article.
-
Chunduri AR, Rajan R, Lima A, Ramamoorthy S, Mamillapalli A. Chunduri AR, et al. BMC Genomics. 2022 Mar 31;23(1):247. doi: 10.1186/s12864-022-08446-3. BMC Genomics. 2022. PMID: 35361117 Free PMC article.
References
-
- Chernov IP, Akopov SB, Nikolaev LG. [Structure and function of nuclear matrix associated regions (S/MARs)] Bioorg Khim. 2004;30:3–14. - PubMed
-
- Allen GC, Spiker S, Thompson WF. Use of matrix attachment regions (MARs) to minimize transgene silencing. Plant Mol Biol. 2000;43:361–376. - PubMed
-
- Bode J, Stengert-Iber M, Kay V, Schlake T, Dietz-Pfeilstetter A. Scaffold/matrix-attached regions: Topological switches with multiple regulatory functions. Crit Rev Eukaryot Gene Expr. 1996;6:115–138. - PubMed
-
- Michalowski SM, Allen GC, Hall GE, Jr., Thompson WF, Spiker S. Characterization of randomly-obtained matrix attachment regions (MARs) from higher plants. Biochemistry. 1999;38:12795–12804. - PubMed
-
- Butaye KM, Goderis IJ, Wouters PF, Pues JM, Delaure SL, et al. Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regions. Plant J. 2004;39:440–449. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous