Valence isomerization of 2-phospha-4-silabicyclo[1.1.0]butane: a high-level ab initio study - PubMed
Valence isomerization of 2-phospha-4-silabicyclo[1.1.0]butane: a high-level ab initio study
J Chris Slootweg et al. J Mol Model. 2006 Jul.
Abstract
The rearrangements for 2-phospha-4-silabicyclo[1.1.0]butane, analogous to the valence isomerization of the hydrocarbons bicyclobutane, 1,3-butadiene, and cyclobutene, were studied at the (U)QCISD(T)/6-311+G**//(U)QCISD/6-31G* level of theory. The monocyclic 1,2-dihydro-1,2-phosphasiletes are shown to be the thermodynamically preferred product, in contrast to the isomerization of the hydrocarbons, which favors the 1,3-butadiene structure. Furthermore, an unprecedented direct isomerization pathway to the 1,2-dihydro-1,2-phosphasiletes was identified. This pathway is competitive with the isomerization via the open-chain butadienes and becomes favorable when electron-donating substituents are present on silicon. Figure 2-Phospha-4-silabicyclo[1.1.0]butane can isomerize directly into the more stable P,Si-cyclobutene via an unprecedented [sigma2s+sigma2a] process, which becomes favorable over the isomerization via the P,Si-butadiene when electron-donating substituents are present on silicon.
Figures

2-Phospha-4-silabicyclo[1.1.0]butane can isomerize directly into the more stable P,Si-cyclobutene via an unprecedented [σ2s+σ2a] process, which becomes favorable over the isomerization via the P,Si-butadiene when electron-donating substituents are present on silicon

Ring opening of cyclobutene 5

Isomerization of bicyclo[1.1.0]butane 9

Relative QCISD(T)/6-311+G**//QCISD/6-31G* (UQCISD(T)/6-311+G**//UQCISD/6-31G* in parenthesis) energies (ZPE corrected, in kcal mol−1) for the rearrangements of 1 and 4 into 2. Selected bond lengths [Å], angles and torsion angles [°] of 1 (C2v): C1–C2 1.498, C2–C3 1.494, C2–C1–C3 59.8, C1–C2–C3–C4 121.9; 2 (C2): C1–C2 1.342, C2–C3 1.479, C3–C4 1.342, C1–C2–C3–C4 37.9; 4 (C2v): C1–C2 1.520, C1–C4 1.570, C2–C3 1.346, C1–C2–C3 94.2; TS1–2 (closed-shell): C1–C2 1.403, C1–C3 2.344, C2–C3 1.542, C2–C4 1.569, C2–C1–C3 39.4; TS4–2 (C2): C1–C2 1.430, C1–C4 2.150, C2–C3 1.379, C1–C2–C3–C4 21.7

Relative QCISD(T)/6-311+G**//QCISD/6-31G* energies (ZPE corrected, in kcal mol−1) for the rearrangements of 2. Selected bond lengths [Å], angles and torsion angles [°] of 3 (C2 h): C1–C2 1.343, C2–C3 1.467, C1–C2–C3 123.8; TS2–3 (C2): C1–C2 1.340, C2–C3 1.490, C1–C2–C3–C4 101.9; TS2–2′ (C2v): C1–C2 1.430, C2–C3 1.379, C1–C2–C3–C4 0.0

Relative QCISD(T)/6-311+G**//QCISD/6-31G* (UQCISD(T)/6-311+G**//UQCISD/6-31G* in parenthesis) energies (ZPE corrected, in kcal mol−1) for the rearrangements of 11 into 14. Selected bond lengths [Å], angles and torsion angles [°] of 11 (Cs): P1–C1 1.852, Si1–C1 1.840, C1–C2 1.548, C1–P1–C2 49.4, C1–Si1–C2 49.7, P1–C1–C2–Si1 119.0; TS11–12: P1–C1 1.782, P1–C2 2.664, Si1–C1 1.982, Si1–C2 1.785; 12 (Cs): P1–C1 1.708, Si1–C2 1.741, C1–C2 1.443; TS12–13: P1–C1–C2–Si1 103.3; 13: P1–C1–C2–Si1 36.3; TS13–14: P1–C1 1.736, P1–Si1 3.001, Si1–C2 1.774, C1–C2 1.414, P1–C1–C2–Si1 34.1; 14: P1–C1 1.869, P1–Si1 2.290, Si1–C2 1.872, C1–C2 1.354

Relative QCISD(T)/6-311+G**//QCISD/6-31G* energies (ZPE corrected, in kcal mol−1) for the direct rearrangement of 11 into 14. Selected bond lengths [Å] and torsion angles [°] of TS11–14: P1–C1 1.834, P1–Si1 2.431, Si1–C2 1.800, C1–C2 1.422, P1–C1–C2–Si1 76.0

Relative QCISD(T)/6-311+G**//QCISD/6-31G* (UQCISD(T)/6-311+G**//UMP2/6-31G* in parenthesis) energies (ZPE corrected, in kcal mol−1) for the rearrangements of 15 into 18. Selected bond lengths [Å], angles and torsion angles [°] of 15 (Cs): P1–C1 1.852, Si1–C1 1.823, Si1–N1 1.730, C1–C2 1.613, C1–P1–C2 51.6, C1–Si1–C2 52.5, P1–C1–C2–Si1 122.1; TS15–16: P1–C1 1.768, P1–C2 2.590, Si1–C1 1.977, Si1–C2 1.748, Si1–N1 1.726; 16 (Cs): P1–C1 1.718, Si1–C2 1.724, Si1–N1 1.717, C1–C2 1.434; TS16–17: P1–C1–C2–Si1 98.2; 17 (Cs): P1–C1 1.727, Si1–C2 1.732, Si1–N1 1.710, Si1–N2 1.717; TS17–18: P1–C1 1.743, P1–Si1 3.103, Si1–C2 1.765, Si1–N1 1.719, C1–C2 1.406, P1–C1–C2–Si1 24.8; 18: P1–C1 1.867, P1–Si1 2.309, Si1–C2 1.867, Si1–N1 1.741, C1–C2 1.356

Relative QCISD(T)/6-311+G**//QCISD/6-31G* energies (ZPE corrected, in kcal mol−1) for the direct rearrangement of 15 into 18. Selected bond lengths [Å] and torsion angles [°] of TS15–18: P1–C1 1.841, P1–Si1 2.458, Si1–C2 1.777, Si1–N1 1.742, Si1–N2 1.736, C1–C2 1.444, P1–C1–C2–Si1 78.0

Relative QCISD(T)/6-311+G**//QCISD/6-31G* energies (ZPE corrected, in kcal mol−1) for the direct rearrangement of 19 into 20. Selected bond lengths [Å] and torsion angles [°] of 19 (Cs): P1–C1 1.852, Si1–C1 1.797, Si1–F1 1.600, C1–C2 1.631, C1–P1–C2 52.2, C1–Si1–C2 54.0, P1–C1–C2–Si1 122.0; TS19–20: P1–C1 1.834, P1–Si1 2.383, Si1–C2 1.758, Si1–F1 1.613, Si1–F2 1.610, C1–C2 1.457, P1–C1–C2–Si1 77.5; 20: P1–C1 1.879, P1–Si1 2.252, Si1–C2 1.841, Si1–F1 1.607, C1–C2 1.357
Similar articles
-
Thermal behavior of [2.1.1]propellane: a DFT/ab initio study.
Jarosch O, Szeimies G. Jarosch O, et al. J Org Chem. 2003 May 16;68(10):3797-801. doi: 10.1021/jo020741d. J Org Chem. 2003. PMID: 12737556
-
Kinetics of Levoglucosenone Isomerization.
Krishna SH, Walker TW, Dumesic JA, Huber GW. Krishna SH, et al. ChemSusChem. 2017 Jan 10;10(1):129-138. doi: 10.1002/cssc.201601308. Epub 2016 Dec 13. ChemSusChem. 2017. PMID: 27863100
-
Isomeric metamorphosis: Si3E (E = S, Se, and Te) bicyclo[1.1.0]butane and cyclobutene.
Lee VY, Miyazaki S, Yasuda H, Sekiguchi A. Lee VY, et al. J Am Chem Soc. 2008 Mar 5;130(9):2758-9. doi: 10.1021/ja800111r. Epub 2008 Feb 9. J Am Chem Soc. 2008. PMID: 18260666
-
The Chemistry and Biology of Cyclophostin, the Cyclipostins and Related Compounds.
Spilling CD. Spilling CD. Molecules. 2019 Jul 16;24(14):2579. doi: 10.3390/molecules24142579. Molecules. 2019. PMID: 31315184 Free PMC article. Review.
-
Schuppe AW, Liu Y, Newhouse TR. Schuppe AW, et al. Nat Prod Rep. 2021 Mar 1;38(3):510-527. doi: 10.1039/d0np00005a. Epub 2020 Sep 15. Nat Prod Rep. 2021. PMID: 32931541 Free PMC article. Review.
References
-
- None
- Hoz S (1987) Bicyclo[1.1.0]butane. In: Rappoport Z (ed) The chemistry of the cyclopropyl group, Part 2, chapter 19. Wiley, Chichester
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1021/ja00118a020', 'is_inner': False, 'url': 'https://doi.org/10.1021/ja00118a020'}]}
- Nguyen KA, Gordon MS (1995) J Am Chem Soc 117:3835–3847
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1021/ja00214a002', 'is_inner': False, 'url': 'https://doi.org/10.1021/ja00214a002'}]}
- Shevlin PB, McKee ML (1988) J Am Chem Soc 110:1666–1671
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/ange.19690812102', 'is_inner': False, 'url': 'https://doi.org/10.1002/ange.19690812102'}]}
- Woodward RB, Hoffmann R (1969) Angew Chem 81:797–870
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/anie.196907811', 'is_inner': False, 'url': 'https://doi.org/10.1002/anie.196907811'}]}
- Woodward RB, Hoffmann R (1969) Angew Chem Int Ed 8:781–853
MeSH terms
Substances
LinkOut - more resources
Full Text Sources