Evolution of a mimicry supergene from a multilocus architecture - PubMed
- ️Sun Jan 01 2012
Evolution of a mimicry supergene from a multilocus architecture
Robert T Jones et al. Proc Biol Sci. 2012.
Abstract
The origin and evolution of supergenes have long fascinated evolutionary biologists. In the polymorphic butterfly Heliconius numata, a supergene controls the switch between multiple different forms, and results in near-perfect mimicry of model species. Here, we use a morphometric analysis to quantify the variation in wing pattern observed in two broods of H. numata with different alleles at the supergene locus, 'P'. Further, we genotype the broods to associate the variation we capture with genetic differences. This allows us to begin mapping the quantitative trait loci that have minor effects on wing pattern. In addition to finding loci on novel chromosomes, our data, to our knowledge, suggest for the first time that ancestral colour-pattern loci, known to have major effects in closely related species, may contribute to the wing patterns displayed by H. numata, despite the large transfer of effects to the supergene.
Figures
![Figure 1.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f119/3223682/09ebdc115a31/rspb20110882-g1.gif)
Wing pattern variation in H. numata. Dorsal forewing (left) and ventral hindwing (right) from female individuals used in the present study. Alleles at the P supergene are (a) PsilPsil (brood 472 mother), (b) PelePsil (brood 502 father, brood 472 father), (c) PaurPsil (brood 502 mother) and (d) PaurPele; (d) also shows the distribution of primary (black) and secondary (white) points used in the image analysis. (e) Heliconius forewing and hindwing anatomy (DC = discal cell).
![Figure 2.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f119/3223682/7fa7978e0b08/rspb20110882-g2.gif)
(a) Distribution of pattern variation in PCs 1 and 2. PsilPsil individuals (diamond) were given low scores by AAMToolbox in PC1, separating them in morphospace (left arrow) from PaurPsil (cross), PelePsil (triangle) and PaurPele (circle) individuals. PC2 separated PaurPsil wings (vertical arrow). (b,c) Pattern variation identified in PC1: male PsilPsil has no hindmarginal black bar and no cubital spot. Arrows show extension of subapical spots and migration of yellow median band towards PaurPele phenotype. (c) Male PaurPele is dark orange with extensive melanization in basal and discal regions, defining the hindmarginal bar (h) and cubital spot (c) (s = subapical spot, d = dagger). (d) Size of effects of LGs contributing to variation in B502 whole-brood analysis: forewings (light grey) and hindwings (dark grey). Asterisk indicates LG with known colour-pattern locus.
![Figure 3.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f119/3223682/d5a74c6ef52f/rspb20110882-g3.gif)
Variation captured in PC1-4, B502 whole-brood analysis of forewings (left) and hindwings (right). Images are aligned with lowest scores in the component to the left; highest to the right; means in centre. Images reconstructed by AAMToolbox.
![Figure 4.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f119/3223682/1592e2d107dd/rspb20110882-g4.gif)
Mapping of wing pattern QTL using male-informative markers. (a) Mapping in LG15. p-values are shown from GLM of B472 forewing analysis, PC1. (b) Mapping in LG18, with p-values from B472 hindwing analysis, PC2. Distance between RpS30 and MRSP is 2.9 cM in H. numata. No polymorphism detected at Ci. p = 0.018 for female-informative segregation. (c) Location of B and D on LG18 of H. melpomene [20]. (d) Mapping in LG01 using B502 forewing analysis, PC9. p = 0.017 for female-informative segregation. (e) Mapping in LG10 using B502 forewing analysis, PC4. p < 0.001 for female-informative segregation. Possible positions of QTL are indicated by the PC to which they associate.
Similar articles
-
Conservatism and novelty in the genetic architecture of adaptation in Heliconius butterflies.
Huber B, Whibley A, Poul YL, Navarro N, Martin A, Baxter S, Shah A, Gilles B, Wirth T, McMillan WO, Joron M. Huber B, et al. Heredity (Edinb). 2015 May;114(5):515-24. doi: 10.1038/hdy.2015.22. Epub 2015 Mar 25. Heredity (Edinb). 2015. PMID: 25806542 Free PMC article.
-
Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry.
Joron M, Frezal L, Jones RT, Chamberlain NL, Lee SF, Haag CR, Whibley A, Becuwe M, Baxter SW, Ferguson L, Wilkinson PA, Salazar C, Davidson C, Clark R, Quail MA, Beasley H, Glithero R, Lloyd C, Sims S, Jones MC, Rogers J, Jiggins CD, ffrench-Constant RH. Joron M, et al. Nature. 2011 Aug 14;477(7363):203-6. doi: 10.1038/nature10341. Nature. 2011. PMID: 21841803 Free PMC article.
-
Evolution of dominance mechanisms at a butterfly mimicry supergene.
Le Poul Y, Whibley A, Chouteau M, Prunier F, Llaurens V, Joron M. Le Poul Y, et al. Nat Commun. 2014 Nov 27;5:5644. doi: 10.1038/ncomms6644. Nat Commun. 2014. PMID: 25429605 Free PMC article.
-
The double game of chromosomal inversions in a neotropical butterfly.
Jay P, Joron M. Jay P, et al. C R Biol. 2022 May 11;345(1):57-73. doi: 10.5802/crbiol.73. C R Biol. 2022. PMID: 35787620 Review.
-
The functional basis of wing patterning in Heliconius butterflies: the molecules behind mimicry.
Kronforst MR, Papa R. Kronforst MR, et al. Genetics. 2015 May;200(1):1-19. doi: 10.1534/genetics.114.172387. Genetics. 2015. PMID: 25953905 Free PMC article. Review.
Cited by
-
Trans-oceanic genomic divergence of Atlantic cod ecotypes is associated with large inversions.
Berg PR, Star B, Pampoulie C, Bradbury IR, Bentzen P, Hutchings JA, Jentoft S, Jakobsen KS. Berg PR, et al. Heredity (Edinb). 2017 Dec;119(6):418-428. doi: 10.1038/hdy.2017.54. Epub 2017 Sep 20. Heredity (Edinb). 2017. PMID: 28930288 Free PMC article.
-
Gene regulatory effects of a large chromosomal inversion in highland maize.
Crow T, Ta J, Nojoomi S, Aguilar-Rangel MR, Torres Rodríguez JV, Gates D, Rellán-Álvarez R, Sawers R, Runcie D. Crow T, et al. PLoS Genet. 2020 Dec 3;16(12):e1009213. doi: 10.1371/journal.pgen.1009213. eCollection 2020 Dec. PLoS Genet. 2020. PMID: 33270639 Free PMC article.
-
Papa R, Kapan DD, Counterman BA, Maldonado K, Lindstrom DP, Reed RD, Nijhout HF, Hrbek T, McMillan WO. Papa R, et al. PLoS One. 2013;8(3):e57033. doi: 10.1371/journal.pone.0057033. Epub 2013 Mar 22. PLoS One. 2013. PMID: 23533571 Free PMC article.
-
Behavioural mimicry in flight path of Batesian intraspecific polymorphic butterfly Papilio polytes.
Kitamura T, Imafuku M. Kitamura T, et al. Proc Biol Sci. 2015 Jun 22;282(1809):20150483. doi: 10.1098/rspb.2015.0483. Proc Biol Sci. 2015. PMID: 26041360 Free PMC article.
-
Rankin KJ, McLean CA, Kemp DJ, Stuart-Fox D. Rankin KJ, et al. BMC Evol Biol. 2016 Sep 6;16:179. doi: 10.1186/s12862-016-0757-2. BMC Evol Biol. 2016. PMID: 27600682 Free PMC article.
References
-
- Mather K. 1955. Polymorphism as an outcome of disruptive selection. Evolution 9, 52–6110.2307/2405357 (doi:10.2307/2405357) - DOI - DOI
-
- Sharma K. D., Boyes J. W. 1961. Modified incompatibility of buckwheat following irradiation. Can. J. Bot. 39, 1241–124610.1139/b61-108 (doi:10.1139/b61-108) - DOI - DOI
-
- Sheppard P. M. 1953. Polymorphism, linkage and the blood groups. Am. Nat. 87, 283–29410.1086/281786 (doi:10.1086/281786) - DOI - DOI
-
- Clarke C. A., Sheppard P. M. 1960. The evolution of mimicry in the butterfly Papilio dardanus. Heredity 14, 163–17310.1038/hdy.1960.14 (doi:10.1038/hdy.1960.14) - DOI - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources