Population genetic structure of Aedes polynesiensis in the Society Islands of French Polynesia: implications for control using a Wolbachia-based autocidal strategy - PubMed
- ️Sun Jan 01 2012
Population genetic structure of Aedes polynesiensis in the Society Islands of French Polynesia: implications for control using a Wolbachia-based autocidal strategy
Corey L Brelsfoard et al. Parasit Vectors. 2012.
Abstract
Background: Aedes polynesiensis is the primary vector of Wuchereria bancrofti in the South Pacific and an important vector of dengue virus. An improved understanding of the mosquito population genetics is needed for insight into the population dynamics and dispersal, which can aid in understanding the epidemiology of disease transmission and control of the vector. In light of the potential release of a Wolbachia infected strain for vector control, our objectives were to investigate the microgeographical and temporal population genetic structure of A. polynesiensis within the Society Islands of French Polynesia, and to compare the genetic background of a laboratory strain intended for release into its population of origin.
Methods: A panel of eight microsatellite loci were used to genotype A. polynesiensis samples collected in French Polynesia from 2005-2008 and introgressed A. polynesiensis and Aedes riversi laboratory strains. Examination of genetic differentiation was performed using F-statistics, STRUCTURE, and an AMOVA. BAYESASS was used to estimate direction and rates of mosquito movement.
Results: FST values, AMOVA, and STRUCTURE analyses suggest low levels of intra-island differentiation from multiple collection sites on Tahiti, Raiatea, and Maupiti. Significant pair-wise FST values translate to relatively minor levels of inter-island genetic differentiation between more isolated islands and little differentiation between islands with greater commercial traffic (i.e., Tahiti, Raiatea, and Moorea). STRUCTURE analyses also indicate two population groups across the Society Islands, and the genetic makeup of Wolbachia infected strains intended for release is similar to that of wild-type populations from its island of origin, and unlike that of A. riversi.
Conclusions: The observed panmictic population on Tahiti, Raiatea, and Moorea is consistent with hypothesized gene flow occurring between islands that have relatively high levels of air and maritime traffic, compared to that of the more isolated Maupiti and Tahaa. Gene flow and potential mosquito movement is discussed in relation to trials of applied autocidal strategies.
Figures
Similar articles
-
Population differentiation and Wolbachia phylogeny in mosquitoes of the Aedes scutellaris group.
Behbahani A, Dutton TJ, Davies N, Townson H, Sinkins SP. Behbahani A, et al. Med Vet Entomol. 2005 Mar;19(1):66-71. doi: 10.1111/j.0269-283X.2005.00542.x. Med Vet Entomol. 2005. PMID: 15752179
-
Hapairai LK, Joseph H, Sang MA, Melrose W, Ritchie SA, Burkot TR, Sinkins SP, Bossin HC. Hapairai LK, et al. J Med Entomol. 2013 Jul;50(4):731-9. doi: 10.1603/me12270. J Med Entomol. 2013. PMID: 23926770
-
Designing effective Wolbachia release programs for mosquito and arbovirus control.
Ross PA. Ross PA. Acta Trop. 2021 Oct;222:106045. doi: 10.1016/j.actatropica.2021.106045. Epub 2021 Jul 15. Acta Trop. 2021. PMID: 34273308 Review.
-
Harnessing mosquito-Wolbachia symbiosis for vector and disease control.
Bourtzis K, Dobson SL, Xi Z, Rasgon JL, Calvitti M, Moreira LA, Bossin HC, Moretti R, Baton LA, Hughes GL, Mavingui P, Gilles JR. Bourtzis K, et al. Acta Trop. 2014 Apr;132 Suppl:S150-63. doi: 10.1016/j.actatropica.2013.11.004. Epub 2013 Nov 16. Acta Trop. 2014. PMID: 24252486 Review.
Cited by
-
Liu WL, Yu HY, Chen YX, Chen BY, Leaw SN, Lin CH, Su MP, Tsai LS, Chen Y, Shiao SH, Xi Z, Jang AC, Chen CH. Liu WL, et al. PLoS Negl Trop Dis. 2022 Jan 11;16(1):e0010084. doi: 10.1371/journal.pntd.0010084. eCollection 2022 Jan. PLoS Negl Trop Dis. 2022. PMID: 35015769 Free PMC article.
-
Mosquito vectors of arboviruses in French Polynesia.
Richard V, Cao-Lormeau VM. Richard V, et al. New Microbes New Infect. 2019 Jun 10;31:100569. doi: 10.1016/j.nmni.2019.100569. eCollection 2019 Sep. New Microbes New Infect. 2019. PMID: 31316821 Free PMC article. Review.
-
Grziwotz F, Strauß JF, Hsieh CH, Telschow A. Grziwotz F, et al. Sci Rep. 2018 Nov 13;8(1):16768. doi: 10.1038/s41598-018-34972-w. Sci Rep. 2018. PMID: 30425277 Free PMC article.
-
Mercer DR, Marie J, Bossin H, Faaruia M, Tetuanui A, Sang MC, Dobson SL. Mercer DR, et al. J Med Entomol. 2012 Sep;49(5):971-80. doi: 10.1603/me11234. J Med Entomol. 2012. PMID: 23025176 Free PMC article.
-
Resource-explicit interactions in spatial population models.
Champer SE, Chae B, Haller BC, Champer J, Messer PW. Champer SE, et al. bioRxiv [Preprint]. 2024 Jan 15:2024.01.13.575512. doi: 10.1101/2024.01.13.575512. bioRxiv. 2024. PMID: 38293045 Free PMC article. Preprint.
References
-
- Lardeux F, Riviere F, Sechan Y, Loncke S. Control of the Aedes vectors of the dengue viruses and Wuchereria bancrofti: the French Polynesian experience. Ann Trop Med Para. 2002;96(2):S105–116. - PubMed
-
- Belkin JN. Mosquitoes of the South Pacific. University of California Press; 1962.
-
- Bonnet DD, Chapman H. The larval habitat of Aedes polynesiensis Marks in Tahiti and methods of control. AmJTrop Med Hyg. 1958;7:512–518. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous