Basidiomycete yeasts in the cortex of ascomycete macrolichens - PubMed
- ️Fri Jan 01 2016
. 2016 Jul 29;353(6298):488-92.
doi: 10.1126/science.aaf8287. Epub 2016 Jul 21.
Veera Tuovinen 2 , Philipp Resl 3 , Dan Vanderpool 4 , Heimo Wolinski 5 , M Catherine Aime 6 , Kevin Schneider 3 , Edith Stabentheiner 3 , Merje Toome-Heller 6 , Göran Thor 7 , Helmut Mayrhofer 3 , Hanna Johannesson 8 , John P McCutcheon 9
Affiliations
- PMID: 27445309
- PMCID: PMC5793994
- DOI: 10.1126/science.aaf8287
Basidiomycete yeasts in the cortex of ascomycete macrolichens
Toby Spribille et al. Science. 2016.
Abstract
For over 140 years, lichens have been regarded as a symbiosis between a single fungus, usually an ascomycete, and a photosynthesizing partner. Other fungi have long been known to occur as occasional parasites or endophytes, but the one lichen-one fungus paradigm has seldom been questioned. Here we show that many common lichens are composed of the known ascomycete, the photosynthesizing partner, and, unexpectedly, specific basidiomycete yeasts. These yeasts are embedded in the cortex, and their abundance correlates with previously unexplained variations in phenotype. Basidiomycete lineages maintain close associations with specific lichen species over large geographical distances and have been found on six continents. The structurally important lichen cortex, long treated as a zone of differentiated ascomycete cells, appears to consistently contain two unrelated fungi.
Copyright © 2016, American Association for the Advancement of Science.
Figures

(A and B) Unrooted maximum likelihood topologies for (A) the Ascomycota member (lecanoromycete) and (B) the Viridiplantae member (alga) within the lichen pair B. fremontii and B. tortuosa, based on 30,001 and 25,788 SNPs, respectively. Numbers refer to metatranscriptome sample IDs (table S2). Scale bars indicate the average number of substitutions per site. (C to E) Logarithm of the fold change (logFC) between vulpinic acid–deficient (B. fremontii) and vulpinic acid–rich (B. tortuosa) phenotypes in 15 Bryoria metatranscriptomes, plotted against transcript abundance (logCPM, logarithm of counts per million reads). Only transcripts found in all 15 samples were included. Ascomycota transcripts only are shown in (C). All fungal transcripts are shown in (D), with taxonomic assignments superimposed; a plot with statistically significant transcript differential abundance is shown as an inset. Viridiplantae transcripts are shown in (E). Red dots indicate a log fold change with P < 0.05 in (C), (E) (highlighted with arrows), and the inset of (D).

(A) Maximum likelihood phylogenomic tree based on 39 fungal proteomes and 349 single-copy orthologous loci. Dating based on a 58-locus subsample shows relative splits between Cyphobasidiales and Cystobasidium minutum and splits leading to the lecanoromycete genera Xanthoria, Cladonia, and Bryoria (colored bars indicate 95% confidence intervals; fungi occurring in lichens are shown in green). (B) Maximum likelihood rDNA phylogeny of the class Cystobasidiomycetes, with images of representative lichen species from which sequences were obtained in each clade; thick branches indicate bootstrap support >70%. Shaded triangles are scaled to the earliest branch splits of underlying sequence divergence in each clade. Full versions of the trees are shown in fig. S3.

(A) B. fremontii, with (B) few FISH-hybridized live yeast cells at the level of the cortex. (C) B. tortuosa, with (D) abundant FISH-hybridized cortical yeast cells (scale bars, 20 μm).

(A) Scanning electron microscopy image of a thallus filament of B. capillaris (scale bar, 200 μm). (B) FISH hybridization of B. capillaris thallus, showing Cyphobasidiales yeasts (green) and the lecanoromycete (blue) with algal chlorophyll A autofluorescence (red). The volume within the two vertical lines is visualized on the right; the unclipped frontal view is shown at the top. Movie S2 shows an animation of the three-dimensional ~100-μm z-stack. (C) Detail of yeast cells (scale bar, 5 μm).
Similar articles
-
Černajová I, Škaloud P. Černajová I, et al. Fungal Biol. 2019 Sep;123(9):625-637. doi: 10.1016/j.funbio.2019.05.006. Epub 2019 Jun 6. Fungal Biol. 2019. PMID: 31416582
-
Tagirdzhanova G, Saary P, Tingley JP, Díaz-Escandón D, Abbott DW, Finn RD, Spribille T. Tagirdzhanova G, et al. Genome Biol Evol. 2021 Apr 5;13(4):evab047. doi: 10.1093/gbe/evab047. Genome Biol Evol. 2021. PMID: 33693712 Free PMC article.
-
Two Basidiomycete Fungi in the Cortex of Wolf Lichens.
Tuovinen V, Ekman S, Thor G, Vanderpool D, Spribille T, Johannesson H. Tuovinen V, et al. Curr Biol. 2019 Feb 4;29(3):476-483.e5. doi: 10.1016/j.cub.2018.12.022. Epub 2019 Jan 17. Curr Biol. 2019. PMID: 30661799
-
Lichenized Fungi and the Evolution of Symbiotic Organization.
Grube M, Wedin M. Grube M, et al. Microbiol Spectr. 2016 Dec;4(6). doi: 10.1128/microbiolspec.FUNK-0011-2016. Microbiol Spectr. 2016. PMID: 28087947 Review.
-
Grube M, Hawksworth DL. Grube M, et al. Mycol Res. 2007 Sep;111(Pt 9):1116-32. doi: 10.1016/j.mycres.2007.04.008. Epub 2007 May 13. Mycol Res. 2007. PMID: 17698333 Review.
Cited by
-
Jung P, Brand R, Briegel-Williams L, Werner L, Jost E, Lentendu G, Singer D, Athavale R, Nürnberg DJ, Alfaro FD, Büdel B, Lakatos M. Jung P, et al. Environ Microbiome. 2024 Aug 9;19(1):59. doi: 10.1186/s40793-024-00601-5. Environ Microbiome. 2024. PMID: 39123247 Free PMC article.
-
Lichens and associated fungi from Glacier Bay National Park, Alaska.
Spribille T, Fryday AM, Pérez-Ortega S, Svensson M, Tønsberg T, Ekman S, Holien H, Resl P, Schneider K, Stabentheiner E, Thüs H, Vondrák J, Sharman L. Spribille T, et al. Lichenologist (Lond). 2020 Mar;52(2):61-181. doi: 10.1017/S0024282920000079. Epub 2020 May 11. Lichenologist (Lond). 2020. PMID: 32788812 Free PMC article.
-
Microbial evolution and transitions along the parasite-mutualist continuum.
Drew GC, Stevens EJ, King KC. Drew GC, et al. Nat Rev Microbiol. 2021 Oct;19(10):623-638. doi: 10.1038/s41579-021-00550-7. Epub 2021 Apr 19. Nat Rev Microbiol. 2021. PMID: 33875863 Free PMC article. Review.
-
Jung P, Briegel-Williams L, Büdel B, Schultz M, Nürnberg DJ, Grube M, D'Agostino PM, Kaštovský J, Mareš J, Lorenz M, González MLG, Forno MD, Westberg M, Chrismas N, Pietrasiak N, Whelan P, Dvořák P, Košuthová A, Gkelis S, Bauersachs T, Schiefelbein U, Giao VTP, Lakatos M; INCb; International Network for research on unicellular CyanoBionts from lichens. Jung P, et al. ISME Commun. 2024 May 6;4(1):ycae069. doi: 10.1093/ismeco/ycae069. eCollection 2024 Jan. ISME Commun. 2024. PMID: 38966402 Free PMC article. Review.
-
Interkingdom microbial consortia mechanisms to guide biotechnological applications.
Zhang S, Merino N, Okamoto A, Gedalanga P. Zhang S, et al. Microb Biotechnol. 2018 Sep;11(5):833-847. doi: 10.1111/1751-7915.13300. Epub 2018 Jul 16. Microb Biotechnol. 2018. PMID: 30014573 Free PMC article. Review.
References
-
- De Bary A. Die Erscheinung der Symbiose. Verlag Karl Trübner; 1879.
-
- Hawksworth DL. The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot J Linn Soc. 1988;96:3–20. doi: 10.1111/j.1095-8339.1988.tb00623.x. - DOI
-
- Ahmadjian V. The Lichen Symbiosis. John Wiley & Sons; 1993.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases