Mass spectrometric analysis of carisoprodol and meprobamate in rat brain microdialysates - PubMed
Mass spectrometric analysis of carisoprodol and meprobamate in rat brain microdialysates
Laszlo Prokai et al. J Mass Spectrom. 2016 Oct.
Abstract
We report the evaluation of several mass spectrometry-based methods for the determination of carisoprodol and meprobamate in samples obtained from the rat brain by in vivo intracranial microdialyis. Among the techniques that aspire to perform analyses without chromatographic separation and thereby increase throughput, chip-based nanoelectrospray ionization and the use of an atmospheric pressure solids analysis probe fell short of requirements because of insufficient detection sensitivity and hard ionization, respectively. Although direct analysis in real time provided the required soft ionization, shortcomings of a tandem mass spectrometry-based assay also included inadequate detection sensitivity and, in addition, poor quantitative reproducibility. Therefore, liquid chromatography coupled with atmospheric pressure chemical ionization tandem mass spectrometry was developed to determine carisoprodol and meprobamate from artificial cerebrospinal fluid as the medium. No desalting and/or extraction of the samples was necessary. The assay, combined with in vivo sampling via intracranial microdialyis, afforded time-resolved concentration profiles for the drug and its major metabolite from the nucleus accumbens region of the brain in rats after systemic administration of carisoprodol. Copyright © 2016 John Wiley & Sons, Ltd.
Keywords: LC-MS/MS; atmospheric pressure chemical ionization; atmospheric pressure solids analysis probe; carisoprodol; direct analysis in real time; in vivo intracranial microdialysis; meprobamate; nanoelectrospray ionization.
Copyright © 2016 John Wiley & Sons, Ltd.
Figures
![Figure 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3003/5315026/51aad3ef864f/nihms847430f1.gif)
Chip-based nanoESI, DART and ASAP mass spectra of (A) carisoprodol and (B) meprobamate.
![Figure 2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3003/5315026/4ac637f61aff/nihms847430f2.gif)
DART-MS/MS analysis of meprobamate (3 ng, upper trace) and carisorprodol (3 ng, middle trace) in triplicate using diethyl acetamidomalonate as an ISTD (1.5 ng, lower trace). The insets indicate the SRMs and the fragmentation of [M+H]+ based on which the compound was detected (m/z given as nominal mass). Carisoprodol-to-ISTD peak area ratio: 0.075±0.032 (CV: 42.1%); meprobamate-to-ISTD peak area ratio: 0.076±0.060.96 (CV: 78.5%); carisoprodol-to-meprobamate peak area ratio: 1.525±1.360.96 (CV: 89.2%).
![Figure 3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3003/5315026/8f9e51f605ce/nihms847430f3.gif)
APCI mass spectra and CID-MS/MS product ion spectra of the [M+H]+ ions of (A) carisoprodol and (B) meprobamate.
![Figure 4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3003/5315026/e3e95b9facd0/nihms847430f4.gif)
Three replicate 5-μL injections of meprobamate (1 ng/mL, upper traces), carisoprodol (1 ng/mL, middle traces) for LC–APCI-MS/MS analysis using diethyl acetamidomalonate as ISTD (10 ng/mL, lower traces) and SRMs indicated (m/z given as nominal mass). Carisoprodol-to-ISTD peak area ratio: 1.43·10−2±1.03·10−3 (CV: 9.8%); meprobamate-to-ISTD peak area ratio: 2.60·10−2±1.89·10−3 (CV: 7.3%).
![Figure 5](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3003/5315026/974989684ddd/nihms847430f5.gif)
Carisoprodol and meprobamate concentrations in the extracellular fluid of the nucleus accumbens of rats determined by in vivo microdialysis followed by LC–APCI-MS/MS assay after administration of 100 mg/kg i.p. carisoprodol.
Similar articles
-
Carbonaro TM, Nguyen V, Forster MJ, Gatch MB, Prokai L. Carbonaro TM, et al. Neuropharmacology. 2020 Sep 1;174:108152. doi: 10.1016/j.neuropharm.2020.108152. Epub 2020 May 29. Neuropharmacology. 2020. PMID: 32479814 Free PMC article.
-
Determination of carisoprodol and meprobamate in oral fluid.
Coulter C, Garnier M, Tuyay J, Orbita J Jr, Moore C. Coulter C, et al. J Anal Toxicol. 2012 Apr;36(3):217-20. doi: 10.1093/jat/bks009. J Anal Toxicol. 2012. PMID: 22417839
-
Matsumoto T, Sano T, Matsuoka T, Aoki M, Maeno Y, Nagao M. Matsumoto T, et al. J Anal Toxicol. 2003 Mar;27(2):118-22. doi: 10.1093/jat/27.2.118. J Anal Toxicol. 2003. PMID: 12670008
-
Essler S, Bruns K, Frontz M, McCutcheon JR. Essler S, et al. J Chromatogr B Analyt Technol Biomed Life Sci. 2012 Nov 1;908:155-60. doi: 10.1016/j.jchromb.2012.09.001. Epub 2012 Sep 7. J Chromatogr B Analyt Technol Biomed Life Sci. 2012. PMID: 23040985
-
Forced degradation and impurity profiling: recent trends in analytical perspectives.
Jain D, Basniwal PK. Jain D, et al. J Pharm Biomed Anal. 2013 Dec;86:11-35. doi: 10.1016/j.jpba.2013.07.013. Epub 2013 Jul 31. J Pharm Biomed Anal. 2013. PMID: 23969330 Review.
Cited by
-
Carbonaro TM, Nguyen V, Forster MJ, Gatch MB, Prokai L. Carbonaro TM, et al. Neuropharmacology. 2020 Sep 1;174:108152. doi: 10.1016/j.neuropharm.2020.108152. Epub 2020 May 29. Neuropharmacology. 2020. PMID: 32479814 Free PMC article.
References
-
- Dalen P, Alvan G, Wakelkamp M, Olsen H. Formation of meprobamate from carisoprodol is catalysed by CYP2C19. Pharmacogenetics. 1996;6:387–394. - PubMed
-
- Haizlip TM, Ewing JA. Meprobamate habituation: a controlled clinical study. N Eng J Med. 1958;258:1181. - PubMed
-
-
US Code of Federal Regulations, Title 21, Section 1308.14.
-
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources