The consumption of viruses returns energy to food chains - PubMed
- ️Sun Jan 01 2023
The consumption of viruses returns energy to food chains
John P DeLong et al. Proc Natl Acad Sci U S A. 2023.
Abstract
Viruses impact host cells and have indirect effects on ecosystem processes. Plankton such as ciliates can reduce the abundance of virions in water, but whether virus consumption translates into demographic consequences for the grazers is unknown. Here, we show that small protists not only can consume viruses they also can grow and divide given only viruses to eat. Moreover, the ciliate Halteria sp. foraging on chloroviruses displays dynamics and interaction parameters that are similar to other microbial trophic interactions. These results suggest that the effect of viruses on ecosystems extends beyond (and in contrast to) the viral shunt by redirecting energy up food chains.
Keywords: microbial loop; viral shunt; virovory.
Conflict of interest statement
The authors declare no competing interest.
Figures

Halteria (A) and Paramecium bursaria (B) reduced plaque-forming unit density by twofold to two orders of magnitude in 2 d. Supplemental feeding of chloroviruses to the ciliate Halteria led to pronounced growth (C, black lines); in control dishes without virus, Halteria cell abundance was steady (C, blue lines). Paramecium (D) showed no cell growth in response to feeding with viruses. Light solid lines are individual replicates; thick lines are averages. Fluorescent micrographs of ciliates fed chloroviruses show Halteria with visible light (E) and with fluorescently labeled virus given as food (F). Two other ciliates, Euplotes sp. (G) and Paramecium caudatum(H), also show the indication of virus uptake. Aggregations of viruses are visible in the inside of vacuoles.

Predator–prey dynamics of Halteria foraging on chloroviruses. Halteria grew in abundance (A) as it decreased the abundance of chloroviruses (B). Individual colored lines are separate bootstrapped model fits.
Similar articles
-
[The microbial loop in the planktonic communities in lakes with various trophic status].
Kopylov AI, Kosolapov DB, Romanenko AV, Krylov AV, Korneva LG, Gusev ES. Kopylov AI, et al. Zh Obshch Biol. 2007 Sep-Oct;68(5):350-60. Zh Obshch Biol. 2007. PMID: 18038648 Russian.
-
Bottom-up behaviourally mediated trophic cascades in plankton food webs.
van Someren Gréve H, Kiørboe T, Almeda R. van Someren Gréve H, et al. Proc Biol Sci. 2019 Feb 13;286(1896):20181664. doi: 10.1098/rspb.2018.1664. Proc Biol Sci. 2019. PMID: 30963919 Free PMC article.
-
Lessons from Chloroviruses: the Complex and Diverse Roles of Viruses in Food Webs.
DeLong JP, Van Etten JL, Dunigan DD. DeLong JP, et al. J Virol. 2023 May 31;97(5):e0027523. doi: 10.1128/jvi.00275-23. Epub 2023 May 1. J Virol. 2023. PMID: 37133447 Free PMC article. Review.
-
Ecology of planktonic heterotrophic flagellates. A review.
Mariottini GL, Pane L. Mariottini GL, et al. Riv Biol. 2003 Jan-Apr;96(1):55-71. Riv Biol. 2003. PMID: 12852174 Review.
-
Pan Y, Long Y, Hui J, Xiao W, Yin J, Li Y, Liu D, Tian Q, Chen L. Pan Y, et al. J Hazard Mater. 2022 May 15;430:128415. doi: 10.1016/j.jhazmat.2022.128415. Epub 2022 Feb 4. J Hazard Mater. 2022. PMID: 35149495
Cited by
-
Integrating viruses into soil food web biogeochemistry.
Carreira C, Lønborg C, Acharya B, Aryal L, Buivydaite Z, Borim Corrêa F, Chen T, Lorenzen Elberg C, Emerson JB, Hillary L, Khadka RB, Langlois V, Mason-Jones K, Netherway T, Sutela S, Trubl G, Wa Kang'eri A, Wang R, White RA 3rd, Winding A, Zhao T, Sapkota R. Carreira C, et al. Nat Microbiol. 2024 Aug;9(8):1918-1928. doi: 10.1038/s41564-024-01767-x. Epub 2024 Aug 2. Nat Microbiol. 2024. PMID: 39095499 Review.
-
Fromm A, Hevroni G, Vincent F, Schatz D, Martinez-Gutierrez CA, Aylward FO, Vardi A. Fromm A, et al. Nat Microbiol. 2024 Jun;9(6):1619-1629. doi: 10.1038/s41564-024-01669-y. Epub 2024 Apr 11. Nat Microbiol. 2024. PMID: 38605173 Free PMC article.
-
Virovore: A Breakthrough in Virology.
Sultana Q, Banerjee S, Agrawal V, Mukherjee D, Sah R, Jaiswal V. Sultana Q, et al. Microbiol Insights. 2023 Aug 21;16:11786361231190333. doi: 10.1177/11786361231190333. eCollection 2023. Microbiol Insights. 2023. PMID: 37621408 Free PMC article. No abstract available.
-
Viral Chemotaxis of Paramecium Bursaria Altered by Algal Endosymbionts.
Ho HVN, Dunigan DD, Salsbery ME, Agarkova IV, Al Ameeli Z, Van Etten JL, DeLong JP. Ho HVN, et al. Microb Ecol. 2023 Nov;86(4):2904-2909. doi: 10.1007/s00248-023-02292-w. Epub 2023 Aug 31. Microb Ecol. 2023. PMID: 37650927
-
Organismal Function Enhancement through Biomaterial Intervention.
Tian F, Zhou Y, Ma Z, Tang R, Wang X. Tian F, et al. Nanomaterials (Basel). 2024 Feb 18;14(4):377. doi: 10.3390/nano14040377. Nanomaterials (Basel). 2024. PMID: 38392750 Free PMC article. Review.
References
-
- Wilhelm S. W., Suttle C. A., Viruses and nutrient cycles in the sea. BioScience 49, 781–788 (1999).
-
- Hennemuth W., et al. , Ingestion and inactivation of bacteriophages by Tetrahymena. J Eukaryot Microbiol. 55, 44–50 (2008). - PubMed
-
- Deng L., et al. , Grazing of heterotrophic flagellates on viruses is driven by feeding behaviour. Env. Microbiol. Rep. 6, 325–330 (2014). - PubMed
-
- Jover L. F., Effler T. C., Buchan A., Wilhelm S. W., Weitz J. S., The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat. Rev. Microbiol. 12, 519–528 (2014). - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources