Dynamics of proteins in different solvent systems: analysis of essential motion in lipases - PubMed
Dynamics of proteins in different solvent systems: analysis of essential motion in lipases
G H Peters et al. Biophys J. 1996 Nov.
Abstract
We have investigated the effect of different solvents on the dynamics of Rhizomucor miehei lipase. Molecular dynamics simulations were performed in water, methyl hexanoate, and cyclohexane. Analysis of the 400-ps trajectories showed that the solvent has a pronounced effect on the geometrical properties of the protein. The radius of gyration and total accessibility surface decrease in organic solvents, whereas the number of hydrogen bonds increases. The essential motions of the protein in different solvents can be described in a low-dimensional "essential subspace," and the dynamic behavior in this subspace correlates with the polarity of the solvent. Methyl hexanoate, which is a substrate for R. miehei lipase, significantly increases the fluctuations in the active-site loop. During the simulation, a methyl hexanoate entered the active-site groove. This observation provides insight into the possible docking mechanism of the substrate.
Similar articles
-
Analysis of the dynamics of rhizomucor miehei lipase at different temperatures.
Peters GH, Toxvaerd S, Andersen KV, Svendsen A. Peters GH, et al. J Biomol Struct Dyn. 1999 Apr;16(5):1003-18. doi: 10.1080/07391102.1999.10508310. J Biomol Struct Dyn. 1999. PMID: 10333171
-
Molecular dynamics simulations of an enzyme surrounded by vacuum, water, or a hydrophobic solvent.
Norin M, Haeffner F, Hult K, Edholm O. Norin M, et al. Biophys J. 1994 Aug;67(2):548-59. doi: 10.1016/S0006-3495(94)80515-6. Biophys J. 1994. PMID: 7948673 Free PMC article.
-
Solvent-induced lid opening in lipases: a molecular dynamics study.
Rehm S, Trodler P, Pleiss J. Rehm S, et al. Protein Sci. 2010 Nov;19(11):2122-30. doi: 10.1002/pro.493. Protein Sci. 2010. PMID: 20812327 Free PMC article.
-
Unraveling the rationale behind organic solvent stability of lipases.
Chakravorty D, Parameswaran S, Dubey VK, Patra S. Chakravorty D, et al. Appl Biochem Biotechnol. 2012 Jun;167(3):439-61. doi: 10.1007/s12010-012-9669-9. Epub 2012 May 5. Appl Biochem Biotechnol. 2012. PMID: 22562495
-
Peters GH, Bywater RP. Peters GH, et al. J Mol Recognit. 2002 Nov-Dec;15(6):393-404. doi: 10.1002/jmr.579. J Mol Recognit. 2002. PMID: 12501159 Review.
Cited by
-
Catalytic behavior of lipase immobilized onto congo red and PEG-decorated particles.
Silva RA, Carmona-Ribeiro AM, Petri DF. Silva RA, et al. Molecules. 2014 Jun 24;19(6):8610-28. doi: 10.3390/molecules19068610. Molecules. 2014. PMID: 24962395 Free PMC article.
-
Weissmueller NT, Schiffter HA, Carlisle RC, Rollier CS, Pollard AJ. Weissmueller NT, et al. Clin Vaccine Immunol. 2015 May;22(5):586-92. doi: 10.1128/CVI.00121-15. Epub 2015 Mar 25. Clin Vaccine Immunol. 2015. PMID: 25809632 Free PMC article.
-
Jääskeläinen S, Verma CS, Hubbard RE, Linko P, Caves LS. Jääskeläinen S, et al. Protein Sci. 1998 Jun;7(6):1359-67. doi: 10.1002/pro.5560070612. Protein Sci. 1998. PMID: 9655340 Free PMC article.
-
Modeling of solvent-dependent conformational transitions in Burkholderia cepacia lipase.
Trodler P, Schmid RD, Pleiss J. Trodler P, et al. BMC Struct Biol. 2009 May 28;9:38. doi: 10.1186/1472-6807-9-38. BMC Struct Biol. 2009. PMID: 19476626 Free PMC article.
-
Influence of a lipid interface on protein dynamics in a fungal lipase.
Peters GH, Bywater RP. Peters GH, et al. Biophys J. 2001 Dec;81(6):3052-65. doi: 10.1016/S0006-3495(01)75944-9. Biophys J. 2001. PMID: 11720974 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources