wikiwand.com

Test functions for optimization - Wikiwand

In applied mathematics, test functions, known as artificial landscapes, are useful to evaluate characteristics of optimization algorithms, such as convergence rate, precision, robustness and general performance.

Here some test functions are presented with the aim of giving an idea about the different situations that optimization algorithms have to face when coping with these kinds of problems. In the first part, some objective functions for single-objective optimization cases are presented. In the second part, test functions with their respective Pareto fronts for multi-objective optimization problems (MOP) are given.

The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck,[1] Haupt et al.[2] and from Rody Oldenhuis software.[3] Given the number of problems (55 in total), just a few are presented here.

The test functions used to evaluate the algorithms for MOP were taken from Deb,[4] Binh et al.[5] and Binh.[6] The software developed by Deb can be downloaded,[7] which implements the NSGA-II procedure with GAs, or the program posted on Internet,[8] which implements the NSGA-II procedure with ES.

Just a general form of the equation, a plot of the objective function, boundaries of the object variables and the coordinates of global minima are given herein.

More information , ...

Name Plot Formula Global minimum Search domain
Rastrigin function Rastrigin function for n=2 {\displaystyle f(\mathbf {x} )=An+\sum _{i=1}^{n}\left[x_{i}^{2}-A\cos(2\pi x_{i})\right]}

{\displaystyle {\text{where: }}A=10}

{\displaystyle f(0,\dots ,0)=0} {\displaystyle -5.12\leq x_{i}\leq 5.12}
Ackley function Ackley's function for n=2 {\displaystyle f(x,y)=-20\exp \left[-0.2{\sqrt {0.5\left(x^{2}+y^{2}\right)}}\right]}

{\displaystyle -\exp \left[0.5\left(\cos 2\pi x+\cos 2\pi y\right)\right]+e+20}

{\displaystyle f(0,0)=0} {\displaystyle -5\leq x,y\leq 5}
Sphere function Sphere function for n=2 {\displaystyle f({\boldsymbol {x}})=\sum _{i=1}^{n}x_{i}^{2}} {\displaystyle f(x_{1},\dots ,x_{n})=f(0,\dots ,0)=0} {\displaystyle -\infty \leq x_{i}\leq \infty }, {\displaystyle 1\leq i\leq n}
Rosenbrock function Rosenbrock's function for n=2 {\displaystyle f({\boldsymbol {x}})=\sum _{i=1}^{n-1}\left[100\left(x_{i+1}-x_{i}^{2}\right)^{2}+\left(1-x_{i}\right)^{2}\right]} {\displaystyle {\text{Min}}={\begin{cases}n=2&\rightarrow \quad f(1,1)=0,\\n=3&\rightarrow \quad f(1,1,1)=0,\\n>3&\rightarrow \quad f(\underbrace {1,\dots ,1} _{n{\text{ times}}})=0\\\end{cases}}} {\displaystyle -\infty \leq x_{i}\leq \infty }, {\displaystyle 1\leq i\leq n}
Beale function Beale's function {\displaystyle f(x,y)=\left(1.5-x+xy\right)^{2}+\left(2.25-x+xy^{2}\right)^{2}}

{\displaystyle +\left(2.625-x+xy^{3}\right)^{2}}

{\displaystyle f(3,0.5)=0} {\displaystyle -4.5\leq x,y\leq 4.5}
Goldstein–Price function Goldstein–Price function {\displaystyle f(x,y)=\left[1+\left(x+y+1\right)^{2}\left(19-14x+3x^{2}-14y+6xy+3y^{2}\right)\right]}

{\displaystyle \left[30+\left(2x-3y\right)^{2}\left(18-32x+12x^{2}+48y-36xy+27y^{2}\right)\right]}

{\displaystyle f(0,-1)=3} {\displaystyle -2\leq x,y\leq 2}
Booth function Booth's function {\displaystyle f(x,y)=\left(x+2y-7\right)^{2}+\left(2x+y-5\right)^{2}} {\displaystyle f(1,3)=0} {\displaystyle -10\leq x,y\leq 10}
Bukin function N.6 Bukin function N.6 {\displaystyle f(x,y)=100{\sqrt {\left|y-0.01x^{2}\right|}}+0.01\left|x+10\right|.\quad } {\displaystyle f(-10,1)=0} {\displaystyle -15\leq x\leq -5}, {\displaystyle -3\leq y\leq 3}
Matyas function Matyas function {\displaystyle f(x,y)=0.26\left(x^{2}+y^{2}\right)-0.48xy} {\displaystyle f(0,0)=0} {\displaystyle -10\leq x,y\leq 10}
Lévi function N.13 Lévi function N.13 {\displaystyle f(x,y)=\sin ^{2}3\pi x+\left(x-1\right)^{2}\left(1+\sin ^{2}3\pi y\right)}

{\displaystyle +\left(y-1\right)^{2}\left(1+\sin ^{2}2\pi y\right)}

{\displaystyle f(1,1)=0} {\displaystyle -10\leq x,y\leq 10}
Griewank function Griewank's function {\displaystyle f(x)=1+{\frac {1}{4000}}\sum _{i=1}^{n}x_{i}^{2}-\prod _{i=1}^{n}P_{i}(x_{i})}, where {\displaystyle P_{i}(x_{i})=\cos \left({\frac {x_{i}}{\sqrt {i}}}\right)} {\displaystyle f(0,\dots ,0)=0} {\displaystyle -\infty \leq x_{i}\leq \infty }, {\displaystyle 1\leq i\leq n}
Himmelblau's function Himmelblau's function {\displaystyle f(x,y)=(x^{2}+y-11)^{2}+(x+y^{2}-7)^{2}.\quad } {\displaystyle {\text{Min}}={\begin{cases}f\left(3.0,2.0\right)&=0.0\\f\left(-2.805118,3.131312\right)&=0.0\\f\left(-3.779310,-3.283186\right)&=0.0\\f\left(3.584428,-1.848126\right)&=0.0\\\end{cases}}} {\displaystyle -5\leq x,y\leq 5}
Three-hump camel function Three Hump Camel function {\displaystyle f(x,y)=2x^{2}-1.05x^{4}+{\frac {x^{6}}{6}}+xy+y^{2}} {\displaystyle f(0,0)=0} {\displaystyle -5\leq x,y\leq 5}
Easom function Easom function {\displaystyle f(x,y)=-\cos \left(x\right)\cos \left(y\right)\exp \left(-\left(\left(x-\pi \right)^{2}+\left(y-\pi \right)^{2}\right)\right)} {\displaystyle f(\pi ,\pi )=-1} {\displaystyle -100\leq x,y\leq 100}
Cross-in-tray function Cross-in-tray function {\displaystyle f(x,y)=-0.0001\left[\left|\sin x\sin y\exp \left(\left|100-{\frac {\sqrt {x^{2}+y^{2}}}{\pi }}\right|\right)\right|+1\right]^{0.1}} {\displaystyle {\text{Min}}={\begin{cases}f\left(1.34941,-1.34941\right)&=-2.06261\\f\left(1.34941,1.34941\right)&=-2.06261\\f\left(-1.34941,1.34941\right)&=-2.06261\\f\left(-1.34941,-1.34941\right)&=-2.06261\\\end{cases}}} {\displaystyle -10\leq x,y\leq 10}
Eggholder function[9][10] Eggholder function {\displaystyle f(x,y)=-\left(y+47\right)\sin {\sqrt {\left|{\frac {x}{2}}+\left(y+47\right)\right|}}-x\sin {\sqrt {\left|x-\left(y+47\right)\right|}}} {\displaystyle f(512,404.2319)=-959.6407} {\displaystyle -512\leq x,y\leq 512}
Hölder table function Holder table function {\displaystyle f(x,y)=-\left|\sin x\cos y\exp \left(\left|1-{\frac {\sqrt {x^{2}+y^{2}}}{\pi }}\right|\right)\right|} {\displaystyle {\text{Min}}={\begin{cases}f\left(8.05502,9.66459\right)&=-19.2085\\f\left(-8.05502,9.66459\right)&=-19.2085\\f\left(8.05502,-9.66459\right)&=-19.2085\\f\left(-8.05502,-9.66459\right)&=-19.2085\end{cases}}} {\displaystyle -10\leq x,y\leq 10}
McCormick function McCormick function {\displaystyle f(x,y)=\sin \left(x+y\right)+\left(x-y\right)^{2}-1.5x+2.5y+1} {\displaystyle f(-0.54719,-1.54719)=-1.9133} {\displaystyle -1.5\leq x\leq 4}, {\displaystyle -3\leq y\leq 4}
Schaffer function N. 2 Schaffer function N.2 {\displaystyle f(x,y)=0.5+{\frac {\sin ^{2}\left(x^{2}-y^{2}\right)-0.5}{\left[1+0.001\left(x^{2}+y^{2}\right)\right]^{2}}}} {\displaystyle f(0,0)=0} {\displaystyle -100\leq x,y\leq 100}
Schaffer function N. 4 Schaffer function N.4 {\displaystyle f(x,y)=0.5+{\frac {\cos ^{2}\left[\sin \left(\left|x^{2}-y^{2}\right|\right)\right]-0.5}{\left[1+0.001\left(x^{2}+y^{2}\right)\right]^{2}}}} {\displaystyle {\text{Min}}={\begin{cases}f\left(0,1.25313\right)&=0.292579\\f\left(0,-1.25313\right)&=0.292579\\f\left(1.25313,0\right)&=0.292579\\f\left(-1.25313,0\right)&=0.292579\end{cases}}} {\displaystyle -100\leq x,y\leq 100}
Styblinski–Tang function Styblinski-Tang function {\displaystyle f({\boldsymbol {x}})={\frac {\sum _{i=1}^{n}x_{i}^{4}-16x_{i}^{2}+5x_{i}}{2}}} {\displaystyle -39.16617n<f(\underbrace {-2.903534,\ldots ,-2.903534} _{n{\text{ times}}})<-39.16616n} {\displaystyle -5\leq x_{i}\leq 5}, {\displaystyle 1\leq i\leq n}..
Shekel function A Shekel function in 2 dimensions and with 10 maxima {\displaystyle f({\vec {x}})=\sum _{i=1}^{m}\;\left(c_{i}+\sum \limits _{j=1}^{n}(x_{j}-a_{ji})^{2}\right)^{-1}}

or, similarly, {\displaystyle f(x_{1},x_{2},...,x_{n-1},x_{n})=\sum _{i=1}^{m}\;\left(c_{i}+\sum \limits _{j=1}^{n}(x_{j}-a_{ij})^{2}\right)^{-1}}

{\displaystyle -\infty \leq x_{i}\leq \infty }, {\displaystyle 1\leq i\leq n}

Close

More information , subjected to: ...

Close

[further explanation needed]

More information , ...

NamePlotFunctionsConstraintsSearch domain
Binh and Korn function:[5] Thumb {\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left(x,y\right)=4x^{2}+4y^{2}\\f_{2}\left(x,y\right)=\left(x-5\right)^{2}+\left(y-5\right)^{2}\\\end{cases}}} {\displaystyle {\text{s.t.}}={\begin{cases}g_{1}\left(x,y\right)=\left(x-5\right)^{2}+y^{2}\leq 25\\g_{2}\left(x,y\right)=\left(x-8\right)^{2}+\left(y+3\right)^{2}\geq 7.7\\\end{cases}}} {\displaystyle 0\leq x\leq 5}, {\displaystyle 0\leq y\leq 3}
Chankong and Haimes function:[16] Thumb {\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left(x,y\right)=2+\left(x-2\right)^{2}+\left(y-1\right)^{2}\\f_{2}\left(x,y\right)=9x-\left(y-1\right)^{2}\\\end{cases}}} {\displaystyle {\text{s.t.}}={\begin{cases}g_{1}\left(x,y\right)=x^{2}+y^{2}\leq 225\\g_{2}\left(x,y\right)=x-3y+10\leq 0\\\end{cases}}} {\displaystyle -20\leq x,y\leq 20}
Fonseca–Fleming function:[17] Thumb {\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left({\boldsymbol {x}}\right)=1-\exp \left[-\sum _{i=1}^{n}\left(x_{i}-{\frac {1}{\sqrt {n}}}\right)^{2}\right]\\f_{2}\left({\boldsymbol {x}}\right)=1-\exp \left[-\sum _{i=1}^{n}\left(x_{i}+{\frac {1}{\sqrt {n}}}\right)^{2}\right]\\\end{cases}}} {\displaystyle -4\leq x_{i}\leq 4}, {\displaystyle 1\leq i\leq n}
Test function 4:[6] Thumb {\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left(x,y\right)=x^{2}-y\\f_{2}\left(x,y\right)=-0.5x-y-1\\\end{cases}}} {\displaystyle {\text{s.t.}}={\begin{cases}g_{1}\left(x,y\right)=6.5-{\frac {x}{6}}-y\geq 0\\g_{2}\left(x,y\right)=7.5-0.5x-y\geq 0\\g_{3}\left(x,y\right)=30-5x-y\geq 0\\\end{cases}}} {\displaystyle -7\leq x,y\leq 4}
Kursawe function:[18] Thumb {\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left({\boldsymbol {x}}\right)=\sum _{i=1}^{2}\left[-10\exp \left(-0.2{\sqrt {x_{i}^{2}+x_{i+1}^{2}}}\right)\right]\\&\\f_{2}\left({\boldsymbol {x}}\right)=\sum _{i=1}^{3}\left[\left|x_{i}\right|^{0.8}+5\sin \left(x_{i}^{3}\right)\right]\\\end{cases}}} {\displaystyle -5\leq x_{i}\leq 5}, {\displaystyle 1\leq i\leq 3}.
Schaffer function N. 1:[19] Thumb {\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left(x\right)=x^{2}\\f_{2}\left(x\right)=\left(x-2\right)^{2}\\\end{cases}}} {\displaystyle -A\leq x\leq A}. Values of {\displaystyle A} from {\displaystyle 10} to {\displaystyle 10^{5}} have been used successfully. Higher values of {\displaystyle A} increase the difficulty of the problem.
Schaffer function N. 2: Thumb {\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left(x\right)={\begin{cases}-x,&{\text{if }}x\leq 1\\x-2,&{\text{if }}1<x\leq 3\\4-x,&{\text{if }}3<x\leq 4\\x-4,&{\text{if }}x>4\\\end{cases}}\\f_{2}\left(x\right)=\left(x-5\right)^{2}\\\end{cases}}} {\displaystyle -5\leq x\leq 10}.
Poloni's two objective function: Thumb {\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left(x,y\right)=\left[1+\left(A_{1}-B_{1}\left(x,y\right)\right)^{2}+\left(A_{2}-B_{2}\left(x,y\right)\right)^{2}\right]\\f_{2}\left(x,y\right)=\left(x+3\right)^{2}+\left(y+1\right)^{2}\\\end{cases}}}

{\displaystyle {\text{where}}={\begin{cases}A_{1}=0.5\sin \left(1\right)-2\cos \left(1\right)+\sin \left(2\right)-1.5\cos \left(2\right)\\A_{2}=1.5\sin \left(1\right)-\cos \left(1\right)+2\sin \left(2\right)-0.5\cos \left(2\right)\\B_{1}\left(x,y\right)=0.5\sin \left(x\right)-2\cos \left(x\right)+\sin \left(y\right)-1.5\cos \left(y\right)\\B_{2}\left(x,y\right)=1.5\sin \left(x\right)-\cos \left(x\right)+2\sin \left(y\right)-0.5\cos \left(y\right)\end{cases}}}

{\displaystyle -\pi \leq x,y\leq \pi }
Zitzler–Deb–Thiele's function N. 1:[20] Thumb {\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left({\boldsymbol {x}}\right)=x_{1}\\f_{2}\left({\boldsymbol {x}}\right)=g\left({\boldsymbol {x}}\right)h\left(f_{1}\left({\boldsymbol {x}}\right),g\left({\boldsymbol {x}}\right)\right)\\g\left({\boldsymbol {x}}\right)=1+{\frac {9}{29}}\sum _{i=2}^{30}x_{i}\\h\left(f_{1}\left({\boldsymbol {x}}\right),g\left({\boldsymbol {x}}\right)\right)=1-{\sqrt {\frac {f_{1}\left({\boldsymbol {x}}\right)}{g\left({\boldsymbol {x}}\right)}}}\\\end{cases}}} {\displaystyle 0\leq x_{i}\leq 1}, {\displaystyle 1\leq i\leq 30}.
Zitzler–Deb–Thiele's function N. 2:[20] Thumb {\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left({\boldsymbol {x}}\right)=x_{1}\\f_{2}\left({\boldsymbol {x}}\right)=g\left({\boldsymbol {x}}\right)h\left(f_{1}\left({\boldsymbol {x}}\right),g\left({\boldsymbol {x}}\right)\right)\\g\left({\boldsymbol {x}}\right)=1+{\frac {9}{29}}\sum _{i=2}^{30}x_{i}\\h\left(f_{1}\left({\boldsymbol {x}}\right),g\left({\boldsymbol {x}}\right)\right)=1-\left({\frac {f_{1}\left({\boldsymbol {x}}\right)}{g\left({\boldsymbol {x}}\right)}}\right)^{2}\\\end{cases}}} {\displaystyle 0\leq x_{i}\leq 1}, {\displaystyle 1\leq i\leq 30}.
Zitzler–Deb–Thiele's function N. 3:[20] Thumb {\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left({\boldsymbol {x}}\right)=x_{1}\\f_{2}\left({\boldsymbol {x}}\right)=g\left({\boldsymbol {x}}\right)h\left(f_{1}\left({\boldsymbol {x}}\right),g\left({\boldsymbol {x}}\right)\right)\\g\left({\boldsymbol {x}}\right)=1+{\frac {9}{29}}\sum _{i=2}^{30}x_{i}\\h\left(f_{1}\left({\boldsymbol {x}}\right),g\left({\boldsymbol {x}}\right)\right)=1-{\sqrt {\frac {f_{1}\left({\boldsymbol {x}}\right)}{g\left({\boldsymbol {x}}\right)}}}-\left({\frac {f_{1}\left({\boldsymbol {x}}\right)}{g\left({\boldsymbol {x}}\right)}}\right)\sin \left(10\pi f_{1}\left({\boldsymbol {x}}\right)\right)\end{cases}}} {\displaystyle 0\leq x_{i}\leq 1}, {\displaystyle 1\leq i\leq 30}.
Zitzler–Deb–Thiele's function N. 4:[20] Thumb {\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left({\boldsymbol {x}}\right)=x_{1}\\f_{2}\left({\boldsymbol {x}}\right)=g\left({\boldsymbol {x}}\right)h\left(f_{1}\left({\boldsymbol {x}}\right),g\left({\boldsymbol {x}}\right)\right)\\g\left({\boldsymbol {x}}\right)=91+\sum _{i=2}^{10}\left(x_{i}^{2}-10\cos \left(4\pi x_{i}\right)\right)\\h\left(f_{1}\left({\boldsymbol {x}}\right),g\left({\boldsymbol {x}}\right)\right)=1-{\sqrt {\frac {f_{1}\left({\boldsymbol {x}}\right)}{g\left({\boldsymbol {x}}\right)}}}\end{cases}}} {\displaystyle 0\leq x_{1}\leq 1}, {\displaystyle -5\leq x_{i}\leq 5}, {\displaystyle 2\leq i\leq 10}
Zitzler–Deb–Thiele's function N. 6:[20] Thumb {\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left({\boldsymbol {x}}\right)=1-\exp \left(-4x_{1}\right)\sin ^{6}\left(6\pi x_{1}\right)\\f_{2}\left({\boldsymbol {x}}\right)=g\left({\boldsymbol {x}}\right)h\left(f_{1}\left({\boldsymbol {x}}\right),g\left({\boldsymbol {x}}\right)\right)\\g\left({\boldsymbol {x}}\right)=1+9\left[{\frac {\sum _{i=2}^{10}x_{i}}{9}}\right]^{0.25}\\h\left(f_{1}\left({\boldsymbol {x}}\right),g\left({\boldsymbol {x}}\right)\right)=1-\left({\frac {f_{1}\left({\boldsymbol {x}}\right)}{g\left({\boldsymbol {x}}\right)}}\right)^{2}\\\end{cases}}} {\displaystyle 0\leq x_{i}\leq 1}, {\displaystyle 1\leq i\leq 10}.
Osyczka and Kundu function:[21] Thumb {\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left({\boldsymbol {x}}\right)=-25\left(x_{1}-2\right)^{2}-\left(x_{2}-2\right)^{2}-\left(x_{3}-1\right)^{2}-\left(x_{4}-4\right)^{2}-\left(x_{5}-1\right)^{2}\\f_{2}\left({\boldsymbol {x}}\right)=\sum _{i=1}^{6}x_{i}^{2}\\\end{cases}}} {\displaystyle {\text{s.t.}}={\begin{cases}g_{1}\left({\boldsymbol {x}}\right)=x_{1}+x_{2}-2\geq 0\\g_{2}\left({\boldsymbol {x}}\right)=6-x_{1}-x_{2}\geq 0\\g_{3}\left({\boldsymbol {x}}\right)=2-x_{2}+x_{1}\geq 0\\g_{4}\left({\boldsymbol {x}}\right)=2-x_{1}+3x_{2}\geq 0\\g_{5}\left({\boldsymbol {x}}\right)=4-\left(x_{3}-3\right)^{2}-x_{4}\geq 0\\g_{6}\left({\boldsymbol {x}}\right)=\left(x_{5}-3\right)^{2}+x_{6}-4\geq 0\end{cases}}} {\displaystyle 0\leq x_{1},x_{2},x_{6}\leq 10}, {\displaystyle 1\leq x_{3},x_{5}\leq 5}, {\displaystyle 0\leq x_{4}\leq 6}.
CTP1 function (2 variables):[4][22] Thumb {\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left(x,y\right)=x\\f_{2}\left(x,y\right)=\left(1+y\right)\exp \left(-{\frac {x}{1+y}}\right)\end{cases}}} {\displaystyle {\text{s.t.}}={\begin{cases}g_{1}\left(x,y\right)={\frac {f_{2}\left(x,y\right)}{0.858\exp \left(-0.541f_{1}\left(x,y\right)\right)}}\geq 1\\g_{2}\left(x,y\right)={\frac {f_{2}\left(x,y\right)}{0.728\exp \left(-0.295f_{1}\left(x,y\right)\right)}}\geq 1\end{cases}}} {\displaystyle 0\leq x,y\leq 1}.
Constr-Ex problem:[4] Thumb {\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left(x,y\right)=x\\f_{2}\left(x,y\right)={\frac {1+y}{x}}\\\end{cases}}} {\displaystyle {\text{s.t.}}={\begin{cases}g_{1}\left(x,y\right)=y+9x\geq 6\\g_{2}\left(x,y\right)=-y+9x\geq 1\\\end{cases}}} {\displaystyle 0.1\leq x\leq 1}, {\displaystyle 0\leq y\leq 5}
Viennet function: Thumb {\displaystyle {\text{Minimize}}={\begin{cases}f_{1}\left(x,y\right)=0.5\left(x^{2}+y^{2}\right)+\sin \left(x^{2}+y^{2}\right)\\f_{2}\left(x,y\right)={\frac {\left(3x-2y+4\right)^{2}}{8}}+{\frac {\left(x-y+1\right)^{2}}{27}}+15\\f_{3}\left(x,y\right)={\frac {1}{x^{2}+y^{2}+1}}-1.1\exp \left(-\left(x^{2}+y^{2}\right)\right)\\\end{cases}}} {\displaystyle -3\leq x,y\leq 3}.

Close

Loading related searches...