zbmath.org

Document Zbl 07761863 - zbMATH Open

[1] Baum C., Braun L., Munch-Hansen A., Scholl P.: Moz \(\mathbb{Z}_{2^k}\) arella: Efficient Vector-OLE and Zero-Knowledge Proofs Over \(\mathbb{Z}_{2^k} \). To appear at IACR CRYPTO 2022 (2022) · Zbl 1517.94060 [2] Baum C., Malozemoff A.J., Rosen M.B., Scholl P.: Mac’n’cheese: Zero-knowledge proofs for boolean and arithmetic circuits with nested disjunctions. In: Malkin T., Peikert C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 92-122. Springer, Virtual Event (2021). doi:10.1007/978-3-030-84259-8_4. · Zbl 1497.94075 [3] Baum, C.; Escudero, D.; Pedrouzo-Ulloa, A.; Scholl, P.; Troncoso-Pastoriza, JR; Galdi, C.; Kolesnikov, V., Efficient protocols for oblivious linear function evaluation from ring-LWE, SCN 20. LNCS, 130-149 (2020), Amalfi, Italy: Springer, Amalfi, Italy · Zbl 1506.94024 · doi:10.1007/978-3-030-57990-6_7 [4] Baum, C.; Braun, L.; Munch-Hansen, A.; Razet, B.; Scholl, P.; Vigna, G.; Shi, E., Appenzeller to brie: Efficient zero-knowledge proofs for mixed-mode arithmetic and Z2k, ACM CCS 2021, 192-211 (2021), Virtual Event, Republic of Korea: ACM Press, Virtual Event, Republic of Korea · doi:10.1145/3460120.3484812 [5] Beaver, D.; Feigenbaum, J., Foundations of secure interactive computing, CRYPTO’91. LNCS, 377-391 (1992), Santa Barbara, CA, USA: Springer, Santa Barbara, CA, USA · Zbl 0789.68044 · doi:10.1007/3-540-46766-1_31 [6] Bendlin, R.; Damgård, I.; Orlandi, C.; Zakarias, S.; Paterson, KG, Semi-homomorphic encryption and multiparty computation, EUROCRYPT 2011. LNCS, 169-188 (2011), Tallinn, Estonia: Springer, Tallinn, Estonia · Zbl 1281.94015 · doi:10.1007/978-3-642-20465-4_11 [7] Ben-Sasson, E.; Chiesa, A.; Genkin, D.; Tromer, E.; Virza, M.; Canetti, R.; Garay, JA, SNARKs for C: Verifying program executions succinctly and in zero knowledge, CRYPTO 2013, Part II. LNCS, 90-108 (2013), Santa Barbara, CA, USA: Springer, Santa Barbara, CA, USA · Zbl 1317.68050 · doi:10.1007/978-3-642-40084-1_6 [8] Bitansky, N.; Chiesa, A.; Ishai, Y.; Ostrovsky, R.; Paneth, O.; Sahai, A., Succinct non-interactive arguments via linear interactive proofs, TCC 2013. LNCS, 315-333 (2013), Tokyo, Japan: Springer, Tokyo, Japan · doi:10.1007/978-3-642-36594-2_18 [9] Boneh, D.; Boyle, E.; Corrigan-Gibbs, H.; Gilboa, N.; Ishai, Y.; Boldyreva, A.; Micciancio, D., Zero-knowledge proofs on secret-shared data via fully linear PCPs, CRYPTO 2019, Part III. LNCS, 67-97 (2019), Santa Barbara, CA, USA: Springer, Santa Barbara, CA, USA · Zbl 1436.94043 · doi:10.1007/978-3-030-26954-8_3 [10] Boyle, E.; Couteau, G.; Gilboa, N.; Ishai, Y.; Lie, D.; Mannan, M.; Backes, M.; Wang, X., Compressing vector OLE, ACM CCS 2018, 896-912 (2018), Toronto, ON, Canada: ACM Press, Toronto, ON, Canada · doi:10.1145/3243734.3243868 [11] Boyle, E.; Couteau, G.; Gilboa, N.; Ishai, Y.; Kohl, L.; Rindal, P.; Scholl, P.; Cavallaro, L.; Kinder, J.; Wang, X.; Katz, J., Efficient two-round OT extension and silent non-interactive secure computation, ACM CCS 2019, 291-308 (2019), London, UK: ACM Press, London, UK · doi:10.1145/3319535.3354255 [12] Boyle, E.; Couteau, G.; Gilboa, N.; Ishai, Y.; Kohl, L.; Scholl, P.; Boldyreva, A.; Micciancio, D., Efficient pseudorandom correlation generators: Silent OT extension and more, CRYPTO 2019, Part III. LNCS, 489-518 (2019), Santa Barbara, CA, USA: Springer, Santa Barbara, CA, USA · Zbl 1498.68048 · doi:10.1007/978-3-030-26954-8_16 [13] Boyle, E.; Couteau, G.; Gilboa, N.; Ishai, Y.; Kohl, L.; Scholl, P.; Micciancio, D.; Ristenpart, T., Efficient pseudorandom correlation generators from ring-LPN, CRYPTO 2020, Part II. LNCS, 387-416 (2020), Santa Barbara, CA, USA: Springer, Santa Barbara, CA, USA · Zbl 1501.94033 · doi:10.1007/978-3-030-56880-1_14 [14] Catalano, D.; Fiore, D.; Johansson, T.; Nguyen, PQ, Practical homomorphic MACs for arithmetic circuits, EUROCRYPT 2013. LNCS, 336-352 (2013), Athens, Greece: Springer, Athens, Greece · Zbl 1306.94101 · doi:10.1007/978-3-642-38348-9_21 [15] Catrina, O.; de Hoogh, S.; Garay, JA; Prisco, RD, Improved primitives for secure multiparty integer computation, SCN 10. LNCS, 182-199 (2010), Amalfi, Italy: Springer, Amalfi, Italy · Zbl 1291.94183 · doi:10.1007/978-3-642-15317-4_13 [16] Cramer, R.; Damgård, I.; Schoenmakers, B.; Desmedt, Y., Proofs of partial knowledge and simplified design of witness hiding protocols, CRYPTO’94. LNCS, 174-187 (1994), Santa Barbara, CA, USA: Springer, Santa Barbara, CA, USA · Zbl 0939.94546 · doi:10.1007/3-540-48658-5_19 [17] Cramer, R.; Damgård, I.; Escudero, D.; Scholl, P.; Xing, C.; Shacham, H.; Boldyreva, A., SPD \(\mathbb{Z}_{2^k} \): Efficient MPC mod \(2^k\) for dishonest majority, CRYPTO 2018, Part II. LNCS, 769-798 (2018), Santa Barbara, CA, USA: Springer, Santa Barbara, CA, USA · Zbl 1436.94049 · doi:10.1007/978-3-319-96881-0_26 [18] Damgård, I.; Zakarias, S.; Sahai, A., Constant-overhead secure computation of Boolean circuits using preprocessing, TCC 2013. LNCS, 621-641 (2013), Tokyo, Japan: Springer, Tokyo, Japan · Zbl 1315.94068 · doi:10.1007/978-3-642-36594-2_35 [19] Damgård, I.; Pastro, V.; Smart, NP; Zakarias, S.; Safavi-Naini, R.; Canetti, R., Multiparty computation from somewhat homomorphic encryption, CRYPTO 2012. LNCS, 643-662 (2012), Santa Barbara, CA, USA: Springer, Santa Barbara, CA, USA · Zbl 1296.94104 · doi:10.1007/978-3-642-32009-5_38 [20] de Castro L., Juvekar C., Vaikuntanathan, V.: Fast vector oblivious linear evaluation from ring learning with errors. In: WAHC ’21: Proceedings of the 9th on Workshop on Encrypted Computing & Applied Homomorphic Cryptography, Virtual Event, Korea, 15 November 2021, pp. 29-41. WAHC@ACM, (2021). doi:10.1145/3474366.3486928. [21] de Castro, L.; Hazay, C.; Ishai, Y.; Vaikuntanathan, V.; Venkitasubramaniam, M.; Dunkelman, O.; Dziembowski, S., Asymptotically quasi-optimal cryptography, EUROCRYPT 2022, Part I. LNCS, 303-334 (2022), Trondheim, Norway: Springer, Trondheim, Norway · Zbl 1496.94039 · doi:10.1007/978-3-031-06944-4_11 [22] Dittmer S., Ishai Y., Lu S., Ostrovsky R.: Improving Line-Point Zero Knowledge: Two Multiplications for the Price of One. To appear at CCS 2022 (2022) [23] Dittmer, S., Ishai, Y., Ostrovsky, R.: Line-Point Zero Knowledge and Its Applications. In: 2nd Conference on Information-Theoretic Cryptography (ITC 2021). Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021) · Zbl 1517.94092 [24] Escudero, D.; Ghosh, S.; Keller, M.; Rachuri, R.; Scholl, P.; Micciancio, D.; Ristenpart, T., Improved primitives for MPC over mixed arithmetic-binary circuits, CRYPTO 2020, Part II. LNCS, 823-852 (2020), Santa Barbara, CA, USA: Springer, Santa Barbara, CA, USA · Zbl 1519.94114 · doi:10.1007/978-3-030-56880-1_29 [25] Fiat, A.; Shamir, A.; Odlyzko, AM, How to prove yourself: Practical solutions to identification and signature problems, CRYPTO’86. LNCS, 186-194 (1987), Santa Barbara, CA, USA: Springer, Santa Barbara, CA, USA · Zbl 0636.94012 · doi:10.1007/3-540-47721-7_12 [26] Franzese N., Katz J., Lu S., Ostrovsky R., Wang X., Weng C.: Constant-overhead zero-knowledge for RAM programs. In: Vigna G., Shi E. (eds.) ACM CCS 2021, pp. 178-191. ACM Press, Virtual Event, Republic of Korea (2021). doi:10.1145/3460120.3484800. [27] Frederiksen T.K., Nielsen J.B., Orlandi C.: Privacy-free garbled circuits with applications to efficient zero-knowledge. In: Oswald E., Fischlin M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 191-219. Springer, Sofia, Bulgaria (2015). doi:10.1007/978-3-662-46803-6_7. · Zbl 1371.94634 [28] Gennaro R., Gentry C., Parno B., Raykova M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson T., Nguyen P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626-645. Springer, Athens, Greece (2013). doi:10.1007/978-3-642-38348-9_37. · Zbl 1300.94056 [29] Giacomelli I., Madsen J., Orlandi C.: ZKBoo: Faster zero-knowledge for Boolean circuits. In: Holz T., Savage S. (eds.) USENIX Security 2016, pp. 1069-1083. USENIX Association, Austin, TX, USA (2016). [30] Goldwasser S., Micali S., Rackoff C.: The knowledge complexity of interactive proof-systems (extended abstract). In: 17th ACM STOC, pp. 291-304. ACM Press, Providence, RI, USA (1985). doi:10.1145/22145.22178 · Zbl 0900.94025 [31] Golovnev A., Lee J., Setty S., Thaler J., Wahby R.S.: Brakedown: Linear-time and post-quantum SNARKs for R1CS. Cryptology ePrint Archive, Report 2021/1043 (2021) [32] Haque A., Heath D., Kolesnikov V., Lu S., Ostrovsky R., Shah A.: Garbled Circuits With Sublinear Evaluator. Cryptology ePrint Archive, Paper 2022/797 (2022) · Zbl 1496.94048 [33] Heath D., Kolesnikov V.: Stacked garbling for disjunctive zero-knowledge proofs. In: Canteaut A., Ishai Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 569-598. Springer, Zagreb, Croatia (2020). doi:10.1007/978-3-030-45727-3_19. · Zbl 1531.94064 [34] Ishai Y., Kushilevitz E., Ostrovsky R., Sahai A.: Zero-knowledge from secure multiparty computation. In: Johnson D.S., Feige U. (eds.) 39th ACM STOC, pp. 21-30. ACM Press, San Diego, CA, USA (2007). doi:10.1145/1250790.1250794. · Zbl 1232.68044 [35] Jawurek M., Kerschbaum F., Orlandi C.: Zero-knowledge using garbled circuits: how to prove non-algebraic statements efficiently. In: Sadeghi A.-R., Gligor V.D., Yung M. (eds.) ACM CCS 2013, pp. 955-966. ACM Press, Berlin, Germany (2013). doi:10.1145/2508859.2516662. [36] Keller, M.; Orsini, E.; Scholl, P.; Weippl, ER; Katzenbeisser, S.; Kruegel, C.; Myers, AC; Halevi, S., MASCOT: Faster malicious arithmetic secure computation with oblivious transfer, ACM CCS 2016, 830-842 (2016), Vienna, Austria: ACM Press, Vienna, Austria · doi:10.1145/2976749.2978357 [37] Liu T., Xie X., Zhang Y.: zkCNN: Zero knowledge proofs for convolutional neural network predictions and accuracy. In: Vigna G., Shi E. (eds.) ACM CCS 2021, pp. 2968-2985. ACM Press, Virtual Event, Republic of Korea (2021). doi:10.1145/3460120.3485379. [38] Luo N., Antonopoulos T., Harris W.R., Piskac R., Tromer E., Wang X.: Proving UNSAT in zero knowledge. In: Yin H., Stavrou A., Cremers C., Shi E. (eds.) ACM CCS 2022, pp. 2203-2217. ACM Press, Los Angeles, CA, USA (2022). doi:10.1145/3548606.3559373. [39] Neff, CA; Reiter, MK; Samarati, P., A verifiable secret shuffle and its application to e-voting, ACM CCS 2001, 116-125 (2001), Philadelphia, PA, USA: ACM Press, Philadelphia, PA, USA · doi:10.1145/501983.502000 [40] Nielsen J.B., Orlandi C.: LEGO for two-party secure computation. In: Reingold, O (ed.) TCC 2009. LNCS, Vol. 5444, pp. 368-386. Springer (2009). doi:10.1007/978-3-642-00457-5_22 · Zbl 1213.94124 [41] Nielsen, JB; Nordholt, PS; Orlandi, C.; Burra, SS; Safavi-Naini, R.; Canetti, R., A new approach to practical active-secure two-party computation, CRYPTO 2012. LNCS, 681-700 (2012), Santa Barbara, CA, USA: Springer, Santa Barbara, CA, USA · Zbl 1296.94134 · doi:10.1007/978-3-642-32009-5_40 [42] Ore, Ø., Über höhere kongruenzen, Norsk Mat. Forenings Skrifter, 1, 7, 15 (1922) · JFM 48.0132.01 [43] Parker J., Harris W., Pernsteiner S., Cuellar S., Tromer E.: Proving Information Leaks in Zero Knowledge. private communication, to appear soon [44] Parno B., Howell J., Gentry C., Raykova M.: Pinocchio: Nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238-252. IEEE Computer Society Press, Berkeley, CA, USA (2013). doi:10.1109/SP.2013.47 [45] PROVENANCE: Making complex zero-knowledge proofs more practical. accessed on Jun 30th 2022 [46] Roy, L.; Dodis, Y.; Shrimpton, T., SoftSpokenOT: Quieter OT extension from small-field silent VOLE in the minicrypt model, CRYPTO 2022, Part I. LNCS, 657-687 (2022), Santa Barbara, CA, USA: Springer, Santa Barbara, CA, USA · Zbl 1516.94051 · doi:10.1007/978-3-031-15802-5_23 [47] Scholl, P.; Abdalla, M.; Dahab, R., Extending oblivious transfer with low communication via key-homomorphic PRFs, PKC 2018, Part I. LNCS, 554-583 (2018), Rio de Janeiro, Brazil: Springer, Rio de Janeiro, Brazil · Zbl 1439.94058 · doi:10.1007/978-3-319-76578-5_19 [48] Weng C., Yang K., Katz J., Wang X.: Wolverine: Fast, scalable, and communication-efficient zero-knowledge proofs for boolean and arithmetic circuits. In: 2021 IEEE Symposium on Security and Privacy, pp. 1074-1091. IEEE Computer Society Press, San Francisco, CA, USA (2021). doi:10.1109/SP40001.2021.00056 [49] Weng C., Yang K., Xie X., Katz J., Wang X.: Mystique: Efficient conversions for zero-knowledge proofs with applications to machine learning. In: Bailey M., Greenstadt R. (eds.) USENIX Security 2021, pp. 501-518. USENIX Association (2021) [50] Weng, C.; Yang, K.; Yang, Z.; Xie, X.; Wang, X.; Yin, H.; Stavrou, A.; Cremers, C.; Shi, E., AntMan: Interactive zero-knowledge proofs with sublinear communication, ACM CCS 2022, 2901-2914 (2022), Los Angeles, CA, USA: ACM Press, Los Angeles, CA, USA · doi:10.1145/3548606.3560667 [51] Yang, K.; Weng, C.; Lan, X.; Zhang, J.; Wang, X.; Ligatti, J.; Ou, X.; Katz, J.; Vigna, G., Ferret: Fast extension for correlated OT with small communication, ACM CCS 2020, 1607-1626 (2020), Virtual Event, USA: ACM Press, Virtual Event, USA · doi:10.1145/3372297.3417276 [52] Yang, K.; Sarkar, P.; Weng, C.; Wang, X.; Vigna, G.; Shi, E., QuickSilver: Efficient and affordable zero-knowledge proofs for circuits and polynomials over any field, ACM CCS 2021, 2986-3001 (2021), Virtual Event, Republic of Korea: ACM Press, Virtual Event, Republic of Korea · doi:10.1145/3460120.3484556 [53] Zahur S., Rosulek M., Evans D.: Two halves make a whole - reducing data transfer in garbled circuits using half gates. In: Oswald E., Fischlin M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 220-250. Springer, Sofia, Bulgaria (2015). doi:10.1007/978-3-662-46803-6_8. · Zbl 1371.94662 [54] Zhang J., Liu T., Wang W., Zhang Y., Song D., Xie X., Zhang Y.: Doubly efficient interactive proofs for general arithmetic circuits with linear prover time. In: Vigna G., Shi E. (eds.) ACM CCS 2021, pp. 159-177. ACM Press, Virtual Event, Republic of Korea (2021). doi:10.1145/3460120.3484767.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.