Document Zbl 0993.74014 - zbMATH Open
The inplane elastic properties of circular cell and elliptical cell honeycombs. (English) Zbl 0993.74014
Summary: The inplane elastic properties of perfectly circular and elliptic cell honeycombs are derived through an analytical method and validated numerically. In the case of perfectly circular cell hexagonally packed honeycomb, implane elastic properties are shown to be isotropic. However, a departure from the circularity of cells leading to cell ellipticity results in implane properties becoming orthotropic. The orthotropic elasic constants are also derived analytically and validated numerically.
References:
[1] | Gibson, L. J., Ashby, M. F.: Cellular Solids: Structure and Properties. Oxford: Pergamon Press, 1988. · Zbl 0723.73004 |
[2] | Warren, W. E., Kraynik, A. M.: Nonlinear elastic behavior of open-cell foams. J. Appl Mech Trans ASME58, 376-381 (1991). · Zbl 0756.73068 · doi:10.1115/1.2897196 |
[3] | Papka, S. D., Kyriakides, S.: In-plane compressive response and crushing of honeycomb. J. Mech. Phys. Solids42, 1499-1532 (1994). · doi:10.1016/0022-5096(94)90085-X |
[4] | Papka, S. D., Kyriakides, S.: In-plane crushing of a polycarbonate honeycomb. Int. J. Solids Structures35, 239-267 (1998). · Zbl 0919.73243 · doi:10.1016/S0020-7683(97)00062-0 |
[5] | Klintworth, J. W., Stronge, W. J.: Elasto-plastic yield limits and deformation laws for transversely crushed honeycombs. Int. J. Mech. Sci.30, 273-292 (1988). · doi:10.1016/0020-7403(88)90060-4 |
[6] | Triantafyllidis, N., Schraad, M. W.: Onset of failure in aluminum honeycombs under general inplane loading. J. Mech. Phys. Solids46, 1089-1124 (1998). · Zbl 0973.74072 · doi:10.1016/S0022-5096(97)00060-4 |
[7] | Torquato, S., Gibiansky, L. V., Silva, M. J., Gibson, L. J.: Effective mechanical and transport properties of cellular solids. Int. J. Mech. Sci.40, 71-82 (1998). · Zbl 0938.74057 · doi:10.1016/S0020-7403(97)00031-3 |
[8] | Simone, A. E., Gibson, L. J.: Effects of solid distribution on the stiffness and strength of metallic foams. Acta Materialia46, 2139-2150 (1998). · doi:10.1016/S1359-6454(97)00421-7 |
[9] | Gere, J. M., Timoshenko, S. P.: Mechanics of Materials. 2nd ed., 1984. |
[10] | Chung, J., Waas, A.: Collapse, crushing and energy absorption of circular-celled honeycomb and sandwich panels. AIAA-CP99-1358, 1999. |
[11] | Chung, J., Waas, A.: Compressive response of circular cell polycarbonate honeycombs under inplane biaxial stresses, accepted for publication, ASCE J. of Engineering Mechanics, 2000. |
[12] | Faires, J. D., Burden, R.: Numerical Methods. 2nd ed., 1998. · Zbl 0913.65003 |
[13] | Silva, M. J., Gibson, L. J., Hayes, W. C.: The effects of non-periodic microstructure on the elastic properties of two dimensional cellular solids. Int. J. Mech. Sci.37, 1161-1171 (1995). · Zbl 0859.73048 · doi:10.1016/0020-7403(94)00018-F |
[14] | Silva, M. J., Gibson, L. J.: The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids. Int. J. Mech. Sci., (forthcoming) 1996. · Zbl 0900.73667 |
[15] | Gibson, L. J., Engineering Ph. D. thesis, Engineering Department, Cambridge Univ., Cambridge 1981. |
[16] | Gibson, L. J., Ashby, M. F., Schajer, G. S., Robertson, C. I.: Mechanics of two-dimensional cellular materials, Proc. R. Soc. Lond., Ser. A382, 25-42 (1982). · doi:10.1098/rspa.1982.0087 |
[17] | Gibson, L. J., Asby, M. F.: The mechanics of three-dimensional cellular materials. Proc. R. Soc.A 382, 43-59 (1982). · doi:10.1098/rspa.1982.0088 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.