zbmath.org

Document Zbl 1204.68242 - zbMATH Open

Zigzag persistence. (English) Zbl 1204.68242

Summary: We describe a new methodology for studying persistence of topological features across a family of spaces or point-cloud data sets, called zigzag persistence. Building on classical results about quiver representations, zigzag persistence generalises the highly successful theory of persistent homology and addresses several situations which are not covered by that theory. In this paper we develop theoretical and algorithmic foundations with a view towards applications in topological statistics.


MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
55N99 Homology and cohomology theories in algebraic topology

References:

[1] M.F. Atiyah, On the Krull–Schmidt theorem with application to sheaves, Bull. Soc. Math. France 84, 307–317 (1956). · Zbl 0072.18101
[2] G. Carlsson, T. Ishkhanov, V. de Silva, A. Zomorodian, On the local behavior of spaces of natural images, Int. J. Comput. Vis. 76(1), 1–12 (2008). · Zbl 1477.68463 · doi:10.1007/s11263-007-0056-x
[3] G. Carlsson, V. de Silva, D. Morozov, Zigzag persistent homology and real-valued functions, in Proceedings 25th ACM Symposium on Computational Geometry (SoCG), 2009, pp. 247–256. · Zbl 1380.68385
[4] F. Chazal, D. Cohen-Steiner, M. Glisse, L. Guibas, S. Oudot, Proximity of persistence modules and their diagrams, in Proceedings of the 25th Annual ACM Symposium on Computational Geometry (SoCG), 2009, pp. 237–246. · Zbl 1380.68387
[5] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, Stability of persistence diagrams, Discrete Comput. Geom. 37(1), 103–120 (2007). · Zbl 1117.54027 · doi:10.1007/s00454-006-1276-5
[6] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, Extending persistence using Poincaré and Lefschetz duality. Found. Comput. Math. 9(1), 79–103 (2009). · Zbl 1189.55002 · doi:10.1007/s10208-008-9027-z
[7] V. de Silva, G. Carlsson, Topological estimation using witness complexes, in Eurographics Symposium on Point-Based Graphics, ed. by M. Alexa, S. Rusinkiewicz (ETH, Zürich, 2004), pp. 157–166.
[8] H. Derksen, J. Weyman, Quiver representations, Not. Am. Math. Soc. 52(2), 200–206 (2005). · Zbl 1143.16300
[9] H. Edelsbrunner, E.P. Mücke, Three-dimensional alpha shapes, ACM Trans. Graph. 13(1), 43–72 (1994). · Zbl 0806.68107 · doi:10.1145/174462.156635
[10] H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification, Discrete Comput. Geom. 28, 511–533 (2002). · Zbl 1011.68152
[11] P. Gabriel, Unzerlegbare Darstellungen I, Manuscr. Math. 6, 71–103 (1972). · Zbl 0232.08001 · doi:10.1007/BF01298413
[12] V.G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56(1), 57–92 (1980). · Zbl 0427.17001 · doi:10.1007/BF01403155
[13] S. Lang, Algebra, 3rd edn. Graduate Texts in Mathematics (Springer, Berlin, 2005).
[14] A. Zomorodian, G. Carlsson, Computing persistent homology, Discrete Comput. Geom. 33(2), 249–274 (2005). · Zbl 1069.55003 · doi:10.1007/s00454-004-1146-y

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.