Document Zbl 1394.55008 - zbMATH Open
- ️Invalid Date
Equivariant iterated loop space theory and permutative \(G\)-categories. (English) Zbl 1394.55008
It has been a classical problem solved in different ways by Boardman-Vogt, May and Segal how to recognize whether a space is an (infinite) loop space and to construct a delooping if it is. K. Shimakawa has developed in [Publ. Res. Inst. Math. Sci. 25, No. 2, 239–262 (1989; Zbl 0677.55013)] a \(G\)-equivariant analogue of Segal’s approach. The present paper considers an operadic approach to equivariant (infinite) loop space machines.
The authors begin with a space-level treatment. Let us call an operad in \(G\)-spaces a \(G\)-operad. Given a \(G\)-representation \(V\), we can consider the associated little disk \(G\)-operad, where \(G\) acts on the centers of the disks. One defines an \(E_V\)-operad to be a \(G\)-operad weakly equivalent to the little disk operad. The authors’ preferred model is the Steiner operad.
Given an \(E_V\)-space \(Y\), a bar construction gives a potential delooping \(\mathbb{E}_V Y\). It is shown that \(Y \to \Omega^V\mathbb{E}_V\) is a group completion if \(V\) contains the trivial representation \(\mathbb{R}^2\) and actually an equivalence if \(Y\) is \(G\)-connected.
To produce \(G\)-spectra, one has to use \(G\)-\(E_\infty\)-operads, i.e.\(G\)-operads whose \(j\)-th space is a universal \(G\times\Sigma_j\)-space for the family of subgroups \(H\) with \(H\cap \Sigma_j = \{e\}\). Examples are the linear isometry operad and the infinite Steiner operad, both for a complete universe. If \(\mathcal{C}_G\) is a \(G\)-\(E_\infty\)-operad and \(Y\) a \(\mathcal{C}_G\)-space, the authors construct an associated orthogonal spectrum, whose zeroth space is group-completing \(Y\). An example of such a \(Y\) is the classifying space of the category of finite free \(R\)-modules for a ring \(R\) with a \(G\)-action, leading to a genuinely equivariant algebraic \(K\)-theory spectrum (as studied in detail in [M. Merling, Math. Z. 285, No. 3–4, 1205–1248 (2017; Zbl 1365.19007)] and, using different techniques, by Barwick, Glasman and Shah). For this and other examples, the authors develop a theory of suitable categorical input so that the classifying space becomes a \(G\)-\(E_\infty\)-space.
Using an equivariant version of the Barratt-Eccles operad, one of the main results of the present paper identifies the \(G\)-fixed points of the free \(G\)-\(E_\infty\)-space \(\mathbb{P}_GY\) on a space \(Y\) as
\[
\prod_{(H)} \mathbb{P}(EW_H \times_{WH} X^H)_+,
\]
where \((H)\) runs over all conjugacy classes of subgroups of \(G\), the symbol \(\mathbb{P}\) denotes the free \(E_\infty\)-space and \(W_H\) the Weyl group. Using that the orthogonal spectrum associated with \(\mathbb{P}_GY\) is equivalent to \(\Sigma^\infty_G Y\), this gives an alternative proof of the tom Dieck splitting.
MSC:
55P48 | Loop space machines and operads in algebraic topology |
55P42 | Stable homotopy theory, spectra |
55P47 | Infinite loop spaces |
55P91 | Equivariant homotopy theory in algebraic topology |
18D50 | Operads (MSC2010) |
References:
[1] | DOI:10.1112/jtopol/jtu009 · Zbl 1316.55005 · doi:10.1112/jtopol/jtu009 |
[2] | DOI:10.1016/0040-9383(74)90036-6 · Zbl 0292.55010 · doi:10.1016/0040-9383(74)90036-6 |
[3] | DOI:10.2140/pjm.1985.117.27 · Zbl 0575.55010 · doi:10.2140/pjm.1985.117.27 |
[4] | DOI:10.2307/2001770 · Zbl 0769.54041 · doi:10.2307/2001770 |
[5] | DOI:10.1007/BF01229795 · Zbl 0334.55004 · doi:10.1007/BF01229795 |
[6] | DOI:10.1007/BFb0062166 · doi:10.1007/BFb0062166 |
[7] | Elmendorf, Rings, modules, and algebras in stable homotopy theory. Mathematical Surveys and Monographs, 47, 1997; Elmendorf, Rings, modules, and algebras in stable homotopy theory. Mathematical Surveys and Monographs, 47, 1997 · Zbl 0894.55001 |
[8] | DOI:10.1016/j.aim.2005.07.007 · Zbl 1117.19001 · doi:10.1016/j.aim.2005.07.007 |
[9] | DOI:10.1007/BFb0061898 · doi:10.1007/BFb0061898 |
[10] | DOI:10.2140/agt.2017.17.2565 · Zbl 1383.55013 · doi:10.2140/agt.2017.17.2565 |
[11] | DOI:10.1007/BFb0099250 · doi:10.1007/BFb0099250 |
[12] | Kuku, Representation theory and higher algebraic K-theory. Pure and Applied Mathematics (Boca Raton), 287, 2007; Kuku, Representation theory and higher algebraic K-theory. Pure and Applied Mathematics (Boca Raton), 287, 2007 · Zbl 1103.19001 |
[13] | DOI:10.1007/BFb0075778 · Zbl 0611.55001 · doi:10.1007/BFb0075778 |
[14] | DOI:10.1090/memo/0755 · Zbl 1025.55002 · doi:10.1090/memo/0755 |
[15] | DOI:10.1112/S0024611501012692 · Zbl 1017.55004 · doi:10.1112/S0024611501012692 |
[16] | DOI:10.1007/BFb0067491 · doi:10.1007/BFb0067491 |
[17] | DOI:10.1017/CBO9780511662607.008 · doi:10.1017/CBO9780511662607.008 |
[18] | May, Classifying spaces and fibrations. Mem. Amer. Math. Soc., 155, 1975; May, Classifying spaces and fibrations. Mem. Amer. Math. Soc., 155, 1975 · Zbl 0321.55033 |
[19] | DOI:10.1007/BFb0097608 · Zbl 0345.55007 · doi:10.1007/BFb0097608 |
[20] | DOI:10.1016/0022-4049(80)90105-X · Zbl 0469.18009 · doi:10.1016/0022-4049(80)90105-X |
[21] | DOI:10.1016/0022-4049(82)90029-9 · Zbl 0532.55013 · doi:10.1016/0022-4049(82)90029-9 |
[22] | DOI:10.1090/conm/202/02587 · doi:10.1090/conm/202/02587 |
[23] | DOI:10.1090/conm/202/02588 · doi:10.1090/conm/202/02588 |
[24] | DOI:10.2140/gtm.2009.16.283 · doi:10.2140/gtm.2009.16.283 |
[25] | DOI:10.2140/gtm.2009.16.215 · doi:10.2140/gtm.2009.16.215 |
[26] | DOI:10.1016/0040-9383(78)90026-5 · Zbl 0391.55007 · doi:10.1016/0040-9383(78)90026-5 |
[27] | DOI:10.1007/s00209-016-1745-3 · Zbl 1365.19007 · doi:10.1007/s00209-016-1745-3 |
[28] | DOI:10.1016/0022-4049(84)90005-7 · Zbl 0542.57036 · doi:10.1016/0022-4049(84)90005-7 |
[29] | DOI:10.1016/0022-4049(86)90094-0 · Zbl 0625.57024 · doi:10.1016/0022-4049(86)90094-0 |
[30] | DOI:10.1215/kjm/1250522505 · Zbl 0408.57027 · doi:10.1215/kjm/1250522505 |
[31] | DOI:10.1112/S0024610700001241 · Zbl 1024.55009 · doi:10.1112/S0024610700001241 |
[32] | DOI:10.2140/gt.2001.5.399 · Zbl 1002.57057 · doi:10.2140/gt.2001.5.399 |
[33] | DOI:10.2140/gt.2001.5.431 · Zbl 1032.57028 · doi:10.2140/gt.2001.5.431 |
[34] | DOI:10.2140/agt.2003.3.857 · Zbl 1032.57029 · doi:10.2140/agt.2003.3.857 |
[35] | DOI:10.1093/qjmath/54.2.213 · doi:10.1093/qjmath/54.2.213 |
[36] | DOI:10.1007/BF01390197 · Zbl 0267.55020 · doi:10.1007/BF01390197 |
[37] | DOI:10.2977/prims/1195173610 · Zbl 0677.55013 · doi:10.2977/prims/1195173610 |
[38] | DOI:10.1007/BF00535646 · Zbl 0790.55010 · doi:10.1007/BF00535646 |
[39] | DOI:10.1017/S0305004100056292 · Zbl 0442.55009 · doi:10.1017/S0305004100056292 |
[40] | DOI:10.1215/S0012-7094-79-04612-X · Zbl 0413.55012 · doi:10.1215/S0012-7094-79-04612-X |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.