Document Zbl 1417.58010 - zbMATH Open
Estimates for solutions of Dirac equations and an application to a geometric elliptic-parabolic problem. (English) Zbl 1417.58010
Let \(E\) be a Dirac bundle over a Riemannian manifold \(M^m\) (\(m \ge 2\)) with boundary \(\partial M\), and let \(\nabla_0\) be a fixed smooth Dirac connection on \(E\). Recall that a Dirac bundle is a Hermitian vector bundle of left Clifford modules over the Clifford bundle \(\text{Cl}(M)\) such that multiplication by unit vectors in \(TM\) is orthogonal and the covariant derivative is a module derivation. We define the Dirac connection space \(\mathfrak{D}^p(E)\) by the completetion of subspace of \(\Omega^1(\mathrm{Ad}(E))\) commuting with Clifford multiplication with respect to the norm \(\Vert\Gamma\Vert_p := \Vert\Gamma\Vert_{L^{2p}(M)} + \Vert d\Gamma\Vert_{L^p(M)}\) so that \(\nabla= \nabla_0 + \Gamma\) becomes another Dirac connection on \(E\) for \(\Gamma \in \mathfrak{D}^p(E)\). The Dirac operator associated with the Dirac connection \(\nabla\) is defined by \({D\!\!\!\!/} := e_i \cdot \nabla_{e_i}\), where \(e_i\cdot\) denotes Clifford multiplication, and \(\{e_i\}\) is a local orthonormal frame on \(M\). In this paper, the authors first consider the existence and uniqueness for Dirac operators under a class of local elliptic boundary value conditions \(\mathcal{B}\) including chiral conditions, MIT bag boundary conditions and J-boundary conditions:
\[ \begin{cases} {D\!\!\!\!/} \psi = \varphi &\text{in }M\\ \mathcal{B}\psi = \mathcal{B}\psi_0 &\text{on }\partial M, \end{cases} \]
where \(\varphi \in L^p(M)\) and \(\mathcal{B}\psi_0\in W^{1-1/p, p}(E|_{\partial M})\). The Sobolev spaces of sections of \(E\) are associated with the fixed smooth Dirac connection \(\nabla_0,\) and assume \(p^*>1\) if \(m=2\) and \(p^*\ge (3m-2)/4\) if \(m >2\). The authors prove that if \(\Gamma \in \mathfrak{D}^{p^*}(E)\), then for any \(1 <p<p^*\) the above Dirac equation with boundary condition admits a unique solution \(\psi \in W^{1,p}(E)\), and \(\psi\) satisfies the following estimate
\[ \Vert \psi\Vert_{W^{1,p}(E)} \le c (\Vert \varphi\Vert_{L^p(E)} + \Vert\mathcal{B}\psi_0\Vert_{W^{1-1/p,p}(E|_{\partial M})}), \]
where \(c = c(p, \Vert \Gamma\Vert_{p^*})>0\). This estimate is optimal in dimension 2 in the sense that the exponents cannot be improved. It also improves the known estimates in higher dimensions in [R. A. Bartnik and P. T. Chruściel, J. Reine Angew. Math. 579, 13–73 (2005; Zbl 1174.58305)] and [D. Jerison, Adv. Math. 62, 118–134 (1986; Zbl 0627.35008)].
Applying this result, the authors also derive the existence and uniqueness for boundary value problems for Dirac operators along a map. Let \(M\) be a compact Riemannian spin manifold with boundary \(\partial M\), \(N\) be a compact Riemannian manifold and \(\Phi: M\to N\) be a smooth map. Given a fixed spin structure on \(M\), let \(\Sigma M\) be the spin bundle of \(M\). On the twisted bundle \(\Sigma M \otimes \Phi^{-1}TN\), the Dirac operator \({D\!\!\!\!/}\) along a map \(\Phi\) is defined by \({D\!\!\!\!/}\Psi := {\partial\!\!\!/}\psi^\alpha \otimes \theta_\alpha + e_i\cdot \psi^\alpha \otimes \nabla_{\Phi_*(e_i)}^{TN} \theta_\alpha\), where \(\Psi= \psi^\alpha\otimes \theta_\alpha\), \(\{\theta_\alpha\}\) are local cross-section of \(\Phi^{-1}(TN)\), \({\partial\!\!\!/} = e_i\cdot \nabla_{e_i}\) is the usual Dirac operator on the spin bundle over \(M\). We say that \(\Psi\) is a harmonic spinor along the map \(\Phi\) if \({D\!\!\!\!/}\Psi = 0\).
The second main result in this paper is the following. Under these situations, if \(\Phi \in W^{1, 2p^*}(M;N)\), then for any \(1<p<p^*, \eta \in L^p(M; \Sigma M\otimes \Phi^{-1}TN)\) and \(\mathcal{B}\psi \in W^{1-1/p, p}(\partial M; \Sigma M \otimes \phi^{-1}TN)\), the boundary value problem for the Dirac equation
\[ \begin{cases} {D\!\!\!\!/} \Psi = \eta &\text{in }M\\ \mathcal{B}\Psi = \mathcal{B}\psi &\text{on }\partial M, \end{cases} \]
admits a unique solution \(\Psi\in W^{1,p}(M; \Sigma M \otimes \Phi^{-1}TN)\), and
\[ \Vert \Psi\Vert_{W^{1,p}(M)} \le c (\Vert \eta\Vert_{L^p(M)} + \Vert\mathcal{B}\psi\Vert_{W^{1-1/p,p}(\partial M)}). \]
Finally, the authors introduce the notion of Dirac-harmonic map heat flow and obtian the local existence and uniqueness of this heat flow for Dirac-harmonic maps by applying the elliptic estimates for Dirac equations with boundary conditions mentioned above. More precisely, consider the functional
\[ L(\Phi, \Psi) = \frac{1}{2}\int_M \left(\Vert d\Phi\Vert^2 + (\Psi, {D\!\!\!\!/}\Psi)\right), \]
where \((\,\,,\,\,) = \mathrm{Re} \langle \,\,,\,\,\rangle\) is the real part of the Hermitian inner product on \(\Sigma M \otimes \Phi^{-1}TN\). A Dirac-harmonic map is defined to be a critial point \((\Phi, \Psi)\) of \(L\). The Euler-Lagrange equations for this functional are
\[ \tau(\Phi) = \frac{1}{2}(\psi^\alpha, e_i \cdot \psi^\beta) R^N(\theta_\alpha, \theta_\beta)\Phi_*(e_i) =:\mathcal{R}(\Phi, \Psi) \quad \text{and}\quad, {D\!\!\!\!/}\Psi = 0. \]
Consider the following flow for Dirac-harmonic maps: for \(\Phi \in C^{2, 1.\alpha} (M \times (0, T]; N)\) and \(\Psi \in C^{1, 0.\alpha}(M\times [0, T]; \Sigma M \times \Phi^{-1}TN)\),
\[ \begin{cases} \partial_t \Phi = \tau(\Phi) - \mathcal{R}(\Phi, \Psi) &\text{in }M\times (0, T]\\ {D\!\!\!\!/} \Psi =0 &\text{in } M\times [0, T] \end{cases} \]
with the boundary-initial data
\[ \begin{cases} \Phi = \phi &\text{in }M \times \{0\}\cup \partial M \times [0, T]\\ \mathcal{B}\Psi = \mathcal{B}\psi &\text{on }\partial M\times [0, T], \end{cases} \]
where \(\phi \in C^{2, 1.\alpha}(M \times \{0\}\cup \partial M\times [0, T])\) and \(\psi \in C^{1, 0.\alpha}(\partial M\times [0, T]; \Sigma M \times \phi^{-1}TN)\). Here \(f \in C^{2, l.\alpha}\) means that \(f(x, \cdot) \in C^{l+\alpha/2}\) and \(f(\cdot, t) \in C^{k+\alpha}\). The authors show that this heat flow for Dirac-harmonic maps admit a unique solution provided that
\[ \phi \in \bigcap_{T>0} C^{2, 1.\alpha}(\bar M \times [0, T]; N) \]
and
\[ \mathcal{B}\psi \in \bigcap_{T>0} C^{1, 0.\alpha}(\partial M \times [0, T]; \Sigma M \otimes \phi^{-1}TN) \]
for some \(0< \alpha <1\).
MSC:
58E20 | Harmonic maps, etc. |
35J56 | Boundary value problems for first-order elliptic systems |
35J57 | Boundary value problems for second-order elliptic systems |
53C27 | Spin and Spin\({}^c\) geometry |
References:
[1] | Ammann, B.: A variational problem in conformal spin geometry. Habilitationsschrift, Univ. Hamburg (2003) · Zbl 1030.58020 |
[2] | Ammann, B., Ginoux, N.: Some examples of Dirac-harmonic maps.arXiv:1809.09859(2018) · Zbl 1275.58010 |
[3] | Ammann, B., Ginoux, N.: Dirac-harmonic maps from index theory. Calc. Var. Partial Differential Equations 47, 739-762 (2013)Zbl 1275.58010 MR 3070562 · Zbl 1275.58010 |
[4] | Atiyah, M. F., Patodi, V. K., Singer, I. M.: Spectral asymmetry and Riemannian geometry. I. Math. Proc. Cambridge Philos. Soc. 77, 43-69 (1975)Zbl 0297.58008 MR 0397797 · Zbl 0297.58008 |
[5] | Atiyah, M. F., Patodi, V. K., Singer, I. M.: Spectral asymmetry and Riemannian geometry. II. Math. Proc. Cambridge Philos. Soc. 78, 405-432 (1975)Zbl 0314.58016 MR 0397798 · Zbl 0314.58016 |
[6] | Atiyah, M. F., Patodi, V. K., Singer, I. M.: Spectral asymmetry and Riemannian geometry. III. Math. Proc. Cambridge Philos. Soc. 79, 71-99 (1976)Zbl 0325.58015 MR 0397799 · Zbl 0325.58015 |
[7] | Ballmann, W., Br¨uning, J., Carron, G.: Regularity and index theory for Dirac-Schr¨odinger systems with Lipschitz coefficients. J. Math. Pures Appl. (9) 89, 429-476 (2008) Zbl 1145.35353 MR 2416671 · Zbl 1145.35353 |
[8] | B¨ar, C.: On nodal sets for Dirac and Laplace operators. Comm. Math. Phys. 188, 709-721 (1997)Zbl 0888.47028 MR 1473317 · Zbl 0888.47028 |
[9] | B¨ar, C., Ballmann, W.: Boundary value problems for elliptic differential operators of first order. In: Surveys in Differential Geometry 17, Int. Press, Boston, MA, 1-78 (2012) Zbl 1331.58022 MR 3076058 · Zbl 1331.58022 |
[10] | Bartnik, R. A., Chru´sciel, P. T.: Boundary value problems for Dirac-type equations. J. Reine Angew. Math. 579, 13-73 (2005)Zbl 1174.58305 MR 2124018 · Zbl 1174.58305 |
[11] | Begehr, H. G. W.: Complex Analytic Methods for Partial Differential Equations. World Sci., River Edge, NJ (1994)Zbl 0840.35001 MR 1314196 · Zbl 0840.35001 |
[12] | Bismut, J.-M., Cheeger, J.: Families index for manifolds with boundary, superconnections, and cones. I. Families of manifolds with boundary and Dirac operators. J. Funct. Anal. 89, 313-363 (1990)Zbl 0696.53021 MR 1042214 · Zbl 0696.53021 |
[13] | Booss-Bavnbek, B., Marcolli, M., Wang, B. L.: Weak UCP and perturbed monopole equations. Int. J. Math. 13, 987-1008 (2002)Zbl 1058.58014 MR 1936783 706Qun Chen et al. · Zbl 1058.58014 |
[14] | Booss-Bavnbek, B., Wojciechowski, K. P.: Elliptic Boundary Problems for Dirac Operators. Birkh¨auser Boston, Boston, MA (1993)Zbl 0797.58004 MR 1233386 · Zbl 0797.58004 |
[15] | Branding, V.: On the evolution of regularized Dirac-harmonic maps from closed surfaces. arXiv:1406.6274(2014) · Zbl 1436.53030 |
[16] | Br¨uning, J., Lesch, M.: Spectral theory of boundary value problems for Dirac type operators. In: Geometric Aspects of Partial Differential Equations (Roskilde, 1998), Contemp. Math. 242, Amer. Math. Soc., Providence, RI, 203-215 (1999)Zbl 0945.58026 MR 1714487 · Zbl 0945.58026 |
[17] | Br¨uning, J., Lesch, M.: On boundary value problems for Dirac type operators. I. Regularity and self-adjointness. J. Funct. Anal. 185, 1-62 (2001)Zbl 1023.58013 MR 1853751 · Zbl 1023.58013 |
[18] | Carleman, T.: Sur un probl‘eme d’unicit´e par les syst‘emes d’´equations aux d´eriv´ees partielles ‘a deux variables ind´ependantes. Ark. Mat. Astr. Fys. 26, no. 17, 9 pp. (1939)Zbl 0022.34201 MR 0000334 · Zbl 0022.34201 |
[19] | Chang, K. C.: Heat flow and boundary value problem for harmonic maps. Ann. Inst. H. Poincar´e Anal. Non Lin´eaire 6, 363-395 (1989)Zbl 0687.58004 MR 1030856 · Zbl 0687.58004 |
[20] | Chavel, I.: Eigenvalues in Riemannian Geometry. Pure Appl. Math. 115, Academic Press, Orlando, FL (1984)Zbl 0551.53001 MR 0768584 · Zbl 0551.53001 |
[21] | Chen, Q., Jost, J., Li, J. Y., Wang, G. F.: Regularity theorems and energy identities for Diracharmonic maps. Math. Z. 251, 61-84 (2005)Zbl 1091.53042 MR 2176464 · Zbl 1091.53042 |
[22] | Chen, Q., Jost, J., Li, J. Y., Wang, G. F.: Dirac-harmonic maps. Math. Z. 254, 409-432 (2006) Zbl 1103.53033 MR 2262709 · Zbl 1103.53033 |
[23] | Chen, Q., Jost, J., Wang, G. F.: The maximum principle and the Dirichlet problem for Diracharmonic maps. Calc. Var. Partial Differential Equations 47, 87-116 (2013)Zbl 1273.58004 MR 3044133 · Zbl 1273.58004 |
[24] | Chen, Q., Jost, J., Wang, G. F., Zhu, M. M.: The boundary value problem for Dirac-harmonic maps. J. Eur. Math. Soc. 15, 997-1031 (2013)Zbl 1271.81125 MR 3085099 · Zbl 1271.81125 |
[25] | Deligne, P., et al. (eds.): Quantum Fields and Strings: a Course for Mathematicians. Vol. 1, 2. Amer. Math. Soc., Providence, RI (1999)Zbl 0984.00503 |
[26] | Dirac, P. A.: The quantum theory of the electron. Proc. Roy. Soc. London A Math. Phys. Engrg. Sci. 117, 610-624 (1928)JFM 54.0973.01 · JFM 54.0973.01 |
[27] | Eells, J., Sampson, J. H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109-160 (1964)Zbl 0122.40102 MR 0164306 · Zbl 0122.40102 |
[28] | Gibbons, G. W., Hawking, S. W., Horowitz, G. T., Perry, M. J.: Positive mass theorems for black holes. Comm. Math. Phys. 88, 295-308 (1983)MR 0701918 |
[29] | Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Classics Math., Springer, Berlin (2001)Zbl 1042.35002 MR 1814364 · Zbl 1042.35002 |
[30] | Hamilton, R. S.: Harmonic Maps of Manifolds with Boundary. Lecture Notes in Math. 471, Springer, Berlin (1975)Zbl 0308.35003 MR 0482822 · Zbl 0308.35003 |
[31] | Herzlich, M.: A Penrose-like inequality for the mass of Riemannian asymptotically flat manifolds. Comm. Math. Phys. 188, 121-133 (1997)Zbl 0886.53032 MR 1471334 · Zbl 0886.53032 |
[32] | Hijazi, O., Montiel, S., Rold´an, A.: Eigenvalue boundary problems for the Dirac operator. Comm. Math. Phys. 231, 375-390 (2002)Zbl 1018.58020 MR 1946443 · Zbl 1018.58020 |
[33] | Hijazi, O., Montiel, S., Zhang, X.: Conformal lower bounds for the Dirac operator of embedded hypersurfaces. Asian J. Math. 6, 23-36 (2002)Zbl 1016.58013 MR 1902645 · Zbl 1016.58013 |
[34] | H¨ormander, L.: L2estimates and existence theorems for the ¯∂ operator. Acta Math. 113, 89– 152 (1965)Zbl 0158.11002 MR 0179443 · Zbl 0158.11002 |
[35] | Jerison, D.: Carleman inequalities for the Dirac and Laplace operators and unique continuation. Adv. Math. 62, 118-134 (1986)Zbl 0627.35008 MR 0865834 · Zbl 0627.35008 |
[36] | Jost, J.: Geometry and Physics. Springer, Berlin (2009)Zbl 1176.53001 MR 2546999 Estimates for Dirac equations707 · Zbl 1176.53001 |
[37] | Jost, J.: Riemannian Geometry and Geometric Analysis. 6th ed., Universitext, Springer, Heidelberg (2011)Zbl 1227.53001 MR 2829653 · Zbl 1227.53001 |
[38] | Jost, J.: Partial Differential Equations. 3rd ed., Grad. Texts in Math. 214, Springer, New York (2013)Zbl 1259.35001 MR 3012036 · Zbl 1259.35001 |
[39] | Jost, J., Mo, X. H., Zhu, M. M.: Some explicit constructions of Dirac-harmonic maps. J. Geom. Phys. 59, 1512-1527 (2009)Zbl 1183.58011 MR 2569270 · Zbl 1183.58011 |
[40] | Lawson, H. B., Michelsohn, M.-L.: Spin Geometry. Princeton Math. Ser. 38, Princeton Univ. Press, Princeton, NJ (1989)Zbl 0688.57001 MR 1031992 · Zbl 0688.57001 |
[41] | Li, P.: Geometric Analysis. Cambridge Stud. Adv. Math. 134, Cambridge Univ. Press, Cambridge (2012)Zbl 1246.53002 MR 2962229 · Zbl 1246.53002 |
[42] | Li, P., Tam, L. F.: The heat equation and harmonic maps of complete manifolds. Invent. Math. 105, 1-46 (1991)Zbl 0748.58006 MR 1109619 · Zbl 0748.58006 |
[43] | Lin, F. H., Wang, C. Y.: The Analysis of Harmonic Maps and their Heat Flows. World Sci., Hackensack, NJ (2008)Zbl 1203.58004 MR 2431658 · Zbl 1203.58004 |
[44] | Parker, T. H., Taubes, C. H.: On Witten’s proof of the positive energy theorem. Comm. Math. Phys. 84, 223-238 (1982)Zbl 0528.58040 MR 0661134 · Zbl 0528.58040 |
[45] | Raulot, S.: Rigidity of compact Riemannian spin manifolds with boundary. Lett. Math. Phys. 86, 177-192 (2008)Zbl 1204.53037 MR 2465753 · Zbl 1204.53037 |
[46] | Schwarz, G.: Hodge Decomposition—a Method for Solving Boundary Value Problems. Lecture Notes in Math. 1607, Springer, Berlin (1995)Zbl 0828.58002 MR 1367287 · Zbl 0828.58002 |
[47] | Sharp, B., Zhu, M. M.: Regularity at the free boundary for Dirac-harmonic maps from surfaces. Calc. Var. Partial Differential Equations 55, no. 2, art. 27, 30 pp. (2016) Zbl 1375.58014 MR 3465443 · Zbl 1375.58014 |
[48] | Shaw, M. C.: L2-estimates and existence theorems for the tangential Cauchy-Riemann complex. Invent. Math. 82, 133-150 (1985)Zbl 0581.35057 MR 0808113 · Zbl 0581.35057 |
[49] | Struwe, M.: On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv. 60, 558-581 (1985)Zbl 0595.58013 MR 0826871 · Zbl 0595.58013 |
[50] | Struwe, M.: On the evolution of harmonic maps in higher dimensions. J. Differential Geom. 28, 485-502 (1988)Zbl 0631.58004 MR 0965226 · Zbl 0631.58004 |
[51] | Wang, C. Y., Xu, D. L.: Regularity of Dirac-harmonic maps. Int. Math. Res. Notices 2009, 3759-3792Zbl 1182.58007 MR 2544729 · Zbl 1182.58007 |
[52] | Witten, E.: A new proof of the positive energy theorem. Comm. Math. Phys. 80, 381-402 (1981)Zbl 1051.83532 MR 0626707 · Zbl 1051.83532 |
[53] | Yang, L.: A structure theorem of Dirac-harmonic maps between spheres. Calc. Var. Partial Differential Equations 35, 409-420 (2009)Zbl 1177.58015 MR 2496649 · Zbl 1177.58015 |
[54] | Zhu, M. M.: Regularity for weakly Dirac-harmonic maps to hypersurfaces. Ann. Global Anal. Geom. 35, 405-412 (2009)Zbl 1171.58005 MR 2506243 · Zbl 1171.58005 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.