Document Zbl 1511.65137 - zbMATH Open
- ️Thu Sep 21 0902
A well-conditioned and efficient implementation of dual reciprocity method for Poisson equation. (English) Zbl 1511.65137
Summary: One of the attractive and practical techniques to transform the domain integrals to equivalent boundary integrals is the dual reciprocity method (DRM). The success of DRM relies on the proper treatment of the non-homogeneous term in the governing differential equation. For this purpose, radial basis functions (RBFs) interpolations are performed to approximate the non-homogeneous term accurately. Moreover, when the interpolation points are large, the global RBFs produced dense and ill-conditioned interpolation matrix, which poses severe stability and computational issues. Fortunately, there exist interpolation functions with local support known as compactly supported radial basis functions (CSRBFs). These functions produce a sparse and well-conditioned interpolation matrix, especially for large-scale problems. Therefore, this paper aims to apply DRM based on multiquadrics (MQ) RBFs and CSRBFs for evaluation of the Poisson equation, especially for large-scale problems. Furthermore, the convergence analysis of DRM with MQ and CSRBFs is performed, along with error estimate and stability analysis. Several experiments are performed to ensure the well-conditioned, efficient, and accurate behavior of the CSRBFs compared to the MQ-RBFs, especially for large-scale interpolation points.
MSC:
65N38 | Boundary element methods for boundary value problems involving PDEs |
65N35 | Spectral, collocation and related methods for boundary value problems involving PDEs |
65D12 | Numerical radial basis function approximation |
65F35 | Numerical computation of matrix norms, conditioning, scaling |
65R20 | Numerical methods for integral equations |
42A82 | Positive definite functions in one variable harmonic analysis |
65N12 | Stability and convergence of numerical methods for boundary value problems involving PDEs |
65N15 | Error bounds for boundary value problems involving PDEs |
References:
[1] | J, Some studies on dual reciprocity BEM for elastodynamic analysis, Comput. Mech., 17, 270-277 (1996) · Zbl 0841.73066 · doi:10.1007/BF00364830 |
[2] | C. A. Brebbia, J. Dominguez, Boundary elements: An introductory course, WIT press, 1994. · Zbl 0780.73002 |
[3] | G. Chen, J. Zhou, Boundary element methods. Vol. 92. London: Academic press, 1992. · Zbl 0842.65071 |
[4] | C, Dual reciprocity method using compactly supported radial basis functions, Commu. Numeric. Method. Eng., 15, 137-150 (1999) · Zbl 0927.65140 · doi:10.1002/(SICI)1099-0887(199902)15:2<137::AID-CNM233>3.0.CO;2-9 |
[5] | C, Recent developments in the dual reciprocity method using compactly supported radial basis functions, Transform. Dom. Effc. Bound., 1, 1-41 (2003) |
[6] | C. S. Chen, M. D. Marcozzi, S. Chof, The method of fundamental solutions and compactly supported radial basis functions: A meshless approach to 3D problems, <i>WIT Transa. Model. Simul.</i>, <b>25</b> (1999). |
[7] | A, Solution of Poisson’s equation by iterative DRBEM using compactly supported, positive definite radial basis function, Eng. Anal. Bound. Elem., 24, 549-557 (2000) · Zbl 0966.65089 · doi:10.1016/S0955-7997(00)00035-7 |
[8] | M, Multistep scattered data interpolation using compactly supported radial basis functions, J. Comput. Appl. Math., 73, 65-78 (1996) · Zbl 0859.65006 · doi:10.1016/0377-0427(96)00035-0 |
[9] | G, Solving differential equations with radial basis functions: Multilevel methods and smoothing, Adv. Comput. Math., 11, 139-159 (1999) · Zbl 0940.65122 · doi:10.1023/A:1018919824891 |
[10] | M, Improved multiquadric approximation for partial differential equations, Eng. Anal. Bound. Elem., 18, 9-17 (1996) · doi:10.1016/S0955-7997(96)00033-1 |
[11] | M, Some comments on the use of radial basis functions in the dual reciprocity method, Comput. Mech., 21, 141-148 (1998) · Zbl 0931.65116 · doi:10.1007/s004660050290 |
[12] | M, Some recent results and proposals for the use of radial basis functions in the BEM, Eng. Anal. Bound. Elem., 23, 285-296 (1999) · Zbl 0948.65132 · doi:10.1016/S0955-7997(98)00087-3 |
[13] | R, A new implementation of DRM with dual interpolation boundary face method for Poisson equation, Eng. Anal. Bound. Elem., 121, 21-30 (2020) · Zbl 1464.65205 · doi:10.1016/j.enganabound.2020.09.004 |
[14] | B, On the boundary element dual reciprocity method, Eng. Anal. Bound. Elem., 20, 205-211 (1997) · doi:10.1016/S0955-7997(97)00084-2 |
[15] | W, An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems, Chin. Phys. B, 21, 090204 (2012) · doi:10.1088/1674-1056/21/9/090204 |
[16] | S, Augmented thin plate spline approximation in DRM, Bound. Elem. Commu., 6, 55-58 (1995) |
[17] | S, On the evaluation of Poisson equation with dual interpolation boundary face method, Europ. J. Mech.-A/S., 88, 104248 (2021) · Zbl 1485.74096 · doi:10.1016/j.euromechsol.2021.104248 |
[18] | C, Direct use of radial basis interpolation functions for modelling source terms with the boundary element method, Eng. Anal. Bound. Elem., 50, 97-108 (2015) · Zbl 1403.65211 · doi:10.1016/j.enganabound.2014.07.007 |
[19] | C, Performance of compact radial basis functions in the direct interpolation boundary element method for solving potential problems, Comp. Model. Eng. Sci., 113, 367-387 (2017) |
[20] | C. Miranda, Partial differential equations of elliptic type, <i>Springer-Verlag</i>, <b>1970</b>. · Zbl 0198.14101 |
[21] | W, Miscellaneous error bounds for multiquadric and related interpolators, Comp. Math. Appl., 24, 121-138 (1992) · Zbl 0766.41003 · doi:10.1016/0898-1221(92)90175-H |
[22] | P. W. Partridge, C. A. Brebbia, L. C. Wrobel, The dual reciprocity boundary element method Southampton, International Series on Computational Engineering, 1992. · Zbl 0758.65071 |
[23] | P, Radial basis functions as approximate particular solutions: Review of recent progress, Eng. Anal. Bound. Elem., 24, 575-582 (2000) · Zbl 0966.65085 · doi:10.1016/S0955-7997(00)00037-0 |
[24] | R. Schaback, Creating surfaces from scattered data using radial basis functions, <i>Math. Meth. Curv. Surf.</i>, <b>477</b> (1995). · Zbl 0835.65036 |
[25] | R, Error estimates and condition numbers for radial basis function interpolation, Adva. Comput. Math., 3, 251-264 (1995) · Zbl 0861.65007 · doi:10.1007/BF02432002 |
[26] | R. Schaback, On the efficiency of interpolation by radial basis functions, 1997. · Zbl 0937.65013 |
[27] | H, positive definite and compactly supported radial functions of minimal degree, Adva. Compu. Math., 4, 389-396 (1995) · Zbl 0838.41014 · doi:10.1007/BF02123482 |
[28] | H, Error estimates for interpolation by compactly supported radial basis functions of minimal degree, J. Approx. Theory, 93, 258-272 (1998) · Zbl 0904.41013 · doi:10.1006/jath.1997.3137 |
[29] | H. Wendland, Scattered data approximation. Vol. 17, Cambridge university press, 2004. · Zbl 1185.65022 |
[30] | T, On the convergence of the dual reciprocity boundary element method, Eng. Anal. Bound. Elem., 13, 291-298 (1994) · doi:10.1016/0955-7997(94)90055-8 |
[31] | J, A new implementation of BEM by an expanding element interpolation method, Eng. Anal. Bound. Elem., 78, 1-7 (2017) · Zbl 1403.74005 · doi:10.1016/j.enganabound.2017.01.008 |
[32] | J, A double-layer interpolation method for implementation of BEM analysis of problems in potential theory, Appl. Math. Model., 51, 250-269 (2017) · Zbl 1480.65359 · doi:10.1016/j.apm.2017.06.044 |
[33] | J, A dual interpolation boundary face method for elasticity problems, Europ. J. Mech.-A/S., 73, 500-511 (2019) · Zbl 1406.74651 · doi:10.1016/j.euromechsol.2018.10.011 |
[34] | J, A singular element based on dual interpolation BFM for V-shaped notches, Appl. Math. Model., 71, 208-222 (2019) · Zbl 1481.65248 · doi:10.1016/j.apm.2019.02.020 |
[35] | J, A dual interpolation boundary face method with Hermite-type approximation for potential problems, Appl. Math. Model., 81, 457-472 (2020) · Zbl 1481.65034 · doi:10.1016/j.apm.2020.01.010 |
[36] | J, et al. A dual interpolation boundary face method with Hermite-type approximation for elasticity problems, Europ. J. Mech. -A/S., 82, 104005 (2020) · Zbl 1475.74124 · doi:10.1016/j.euromechsol.2020.104005 |
[37] | F, Shape variable radial basis function and its application in dual reciprocity boundary face method, Eng. Anal. Bound. Elem., 35, 244-252 (2011) · Zbl 1259.65188 · doi:10.1016/j.enganabound.2010.08.009 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.