zh.wikipedia.org

牛顿-皮普斯问题 - 维基百科,自由的百科全书

  • ️Tue Sep 18 2007

牛顿-皮普斯问题

牛顿-皮普斯问题是一个掷骰子的概率问题。塞缪尔·皮普斯1693年向艾萨克·牛顿咨询怎样在赌局中下注赢面更大,在信中他问道:下列三种情形哪一种概率最高:

  • A.6个正常的骰子独立投掷,至少出现1个6.
  • B.12个正常的骰子独立投掷,至少出现2个6.
  • C.18个正常的骰子独立投掷,至少出现3个6.[1]

利用二项分布,三个投掷实验的概率分别为:[2]

{\displaystyle P(A)=1-\left({\frac {5}{6}}\right)^{6}={\frac {31031}{46656}}\approx 0.6651\,,}
{\displaystyle P(B)=1-\sum _{x=0}^{1}{\binom {12}{x}}\left({\frac {1}{6}}\right)^{x}\left({\frac {5}{6}}\right)^{12-x}={\frac {1346704211}{2176782336}}\approx 0.6187\,,}
{\displaystyle P(C)=1-\sum _{x=0}^{2}{\binom {18}{x}}\left({\frac {1}{6}}\right)^{x}\left({\frac {5}{6}}\right)^{18-x}={\frac {15166600495229}{25389989167104}}\approx 0.5973\,.}

该类问题的通项公式,一般的,若P(N)是投掷6n个骰子得到至少n个6的概率,则:

{\displaystyle P(N)=1-\sum _{x=0}^{n-1}{\binom {6n}{x}}\left({\frac {1}{6}}\right)^{x}\left({\frac {5}{6}}\right)^{6n-x}\,.}

n变大时,P(N)会逐渐趋近于极限值1/2.

R语言中,该问题可以用如下方法解:

p <- as.numeric(1/6)
s <- c(1, 2, 3)
for (i in s)
{
   x <- 0
   n <- 6*i
   for(j in 0:(i-1)) {x <- x + dbinom(j, n, p) }
   print(paste("Probability of at least ", i, " six in ", n, " fair dice: ", 1-x, sep=""))
}

结果会显示为:

[1] "Probability of at least 1 six in 6 fair dice: 0.665102023319616"
[1] "Probability of at least 2 six in 12 fair dice: 0.618667373732309"
[1] "Probability of at least 3 six in 18 fair dice: 0.597345685947723"

牛頓設想將B和C的骰子每六粒分為一組,A只可分為一組;B和C分別可分成兩組和三組,每組需要在其中一次投擲中出現6。如此可見,A的機率是最大的,因为A只需要在其中一次投擲中出現6,而B和C則分别需要重复A的過程两次和三次。

  1. ^ Isaac Newton as a Probabilist 互联网档案馆存檔,存档日期2007-09-18., Stephen Stigler, University of Chicago
  2. ^ Weisstein, Eric W. (编). Newton-Pepys Problem. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语).